Modularized functions of the Fanconi anemia core complex.

[1]  M. Wang,et al.  The Genetic and Biochemical Basis of FANCD2 Monoubiquitination , 2014, Molecular cell.

[2]  H. Walden,et al.  Structure of the Human FANCL RING-Ube2T Complex Reveals Determinants of Cognate E3-E2 Selection , 2014, Structure.

[3]  Weidong Wang,et al.  The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. , 2013, Molecular cell.

[4]  Lei Li,et al.  Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response , 2013, Cell Research.

[5]  A. D’Andrea,et al.  FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. , 2013, Molecular cell.

[6]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[7]  J. Benítez,et al.  Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. , 2013, American journal of human genetics.

[8]  Wei Yang,et al.  The Histone Mark H3K36me3 Regulates Human DNA Mismatch Repair through Its Interaction with MutSα , 2013, Cell.

[9]  Lei Li,et al.  DNA crosslinking damage and cancer - a tale of friend and foe. , 2013, Translational cancer research.

[10]  J. Walter Mechanism of replication‐coupled DNA interstrand cross‐link repair , 2013 .

[11]  Lei Li,et al.  FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. , 2013, Molecular cell.

[12]  W. McCombie,et al.  Chd5 requires PHD-mediated histone 3 binding for tumor suppression. , 2013, Cell reports.

[13]  H. Kimura,et al.  Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI, is required for DNA crosslink repair , 2012, The EMBO journal.

[14]  K. J. Patel,et al.  Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function , 2012, Nature.

[15]  Weidong Wang,et al.  A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. , 2012, Molecular cell.

[16]  H. Walden,et al.  Towards a Molecular Understanding of the Fanconi Anemia Core Complex , 2012, Anemia.

[17]  A. Auerbach,et al.  FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. , 2012, Blood.

[18]  Lei Li,et al.  Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair , 2012, Proceedings of the National Academy of Sciences.

[19]  Weidong Wang,et al.  Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome , 2012, Proceedings of the National Academy of Sciences.

[20]  A. Weissman,et al.  HECT and RING finger families of E3 ubiquitin ligases at a glance , 2012, Journal of Cell Science.

[21]  H. Kurumizaka,et al.  DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI , 2012, Nucleic acids research.

[22]  Yanbin Zhang,et al.  Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms* , 2011, The Journal of Biological Chemistry.

[23]  K. J. Patel,et al.  Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway , 2011, Nature Structural &Molecular Biology.

[24]  P. Rosenberg,et al.  How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel , 2011, American journal of medical genetics. Part A.

[25]  S. Elledge,et al.  Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway , 2011, Science.

[26]  K. J. Patel,et al.  Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice , 2011, Nature.

[27]  H. Kurumizaka,et al.  Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway , 2011, Proceedings of the National Academy of Sciences.

[28]  N. Zheng,et al.  Structural assembly of cullin-RING ubiquitin ligase complexes. , 2010, Current opinion in structural biology.

[29]  G. Vance,et al.  Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. , 2010, Blood.

[30]  J. Gautier,et al.  The Fanconi anemia pathway and ICL repair: implications for cancer therapy , 2010, Critical reviews in biochemistry and molecular biology.

[31]  Marc Tischkowitz,et al.  RAD51C germline mutations in breast and ovarian cancer patients , 2010, Breast Cancer Research.

[32]  Junya Chen,et al.  FAN1 Acts with FANCI-FANCD2 to Promote DNA Interstrand Cross-Link Repair , 2010, Science.

[33]  A. D’Andrea,et al.  The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. , 2010, Molecular cell.

[34]  Kay Hofmann,et al.  Identification of KIAA1018/FAN1, a DNA Repair Nuclease Recruited to DNA Damage by Monoubiquitinated FANCD2 , 2010, Cell.

[35]  J Wade Harper,et al.  A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. , 2010, Molecular cell.

[36]  M. Sivasubramaniam,et al.  Ku70 Corrupts DNA Repair in the Absence of the Fanconi Anemia Pathway , 2010, Science.

[37]  M. Hengartner,et al.  Deficiency of FANCD2-Associated Nuclease KIAA1018/FAN1 Sensitizes Cells to Interstrand Crosslinking Agents , 2010, Cell.

[38]  A. D’Andrea,et al.  Susceptibility pathways in Fanconi's anemia and breast cancer. , 2010, The New England journal of medicine.

[39]  P. Sung,et al.  MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. , 2010, Molecular cell.

[40]  Weidong Wang,et al.  A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. , 2010, Molecular cell.

[41]  R. Schwab,et al.  ATR activation and replication fork restart are defective in FANCM‐deficient cells , 2010, The EMBO journal.

[42]  S. West,et al.  FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. , 2009, Molecular cell.

[43]  S. Elledge,et al.  The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair , 2009, Science.

[44]  H. Joenje,et al.  Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. , 2009, Human molecular genetics.

[45]  Bing Xia,et al.  Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. , 2009, Molecular cell.

[46]  L. Thompson,et al.  Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. , 2009, Mutation research.

[47]  Kornelia Neveling,et al.  Genotype-phenotype correlations in Fanconi anemia. , 2009, Mutation research.

[48]  P. Sung,et al.  FANCI Binds Branched DNA and Is Monoubiquitinated by UBE2T-FANCL* , 2009, The Journal of Biological Chemistry.

[49]  J. Yates,et al.  Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. , 2009, Molecular cell.

[50]  K. J. Patel,et al.  Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. , 2008, Molecular cell.

[51]  S. Elledge,et al.  FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex. , 2008, Molecular cell.

[52]  A. Constantinou,et al.  Remodeling of DNA replication structures by the branch point translocase FANCM , 2008, Proceedings of the National Academy of Sciences.

[53]  A. Gurtan,et al.  Cell cycle-dependent chromatin loading of the Fanconi anemia core complex by FANCM/FAAP24. , 2008, Blood.

[54]  Andrzej Stasiak,et al.  The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. , 2008, Molecular cell.

[55]  Weidong Wang Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins , 2007, Nature Reviews Genetics.

[56]  B. Vogelstein,et al.  Genetic knockouts and knockins in human somatic cells , 2007, Nature Protocols.

[57]  S. Elledge,et al.  Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair , 2007, Cell.

[58]  Weidong Wang,et al.  FAAP100 is essential for activation of the Fanconi anemia‐associated DNA damage response pathway , 2007, The EMBO journal.

[59]  S. West,et al.  Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. , 2007, Molecular cell.

[60]  S. Lobitz,et al.  Guido Fanconi (1892–1979): a jack of all trades , 2006, Nature Reviews Cancer.

[61]  Weidong Wang,et al.  Evidence for subcomplexes in the Fanconi anemia pathway. , 2006, Blood.

[62]  J. Sale,et al.  REV3 and REV1 Play Major Roles in Recombination-independent Repair of DNA Interstrand Cross-links Mediated by Monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA)* , 2006, Journal of Biological Chemistry.

[63]  J. Postlethwait,et al.  The nuclear accumulation of the Fanconi anemia protein FANCE depends on FANCC. , 2006, DNA repair.

[64]  Susan M. Gordon,et al.  Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. , 2006, DNA repair.

[65]  S. Sarkar,et al.  DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ζ , 2006, The EMBO journal.

[66]  Susan M. Gordon,et al.  FANCC, FANCE, and FANCD2 Form a Ternary Complex Essential to the Integrity of the Fanconi Anemia DNA Damage Response Pathway* , 2005, Journal of Biological Chemistry.

[67]  C. Mathew,et al.  A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M , 2005, Nature Genetics.

[68]  H. Arakawa,et al.  Fanconi Anemia Protein FANCD2 Promotes Immunoglobulin Gene Conversion and DNA Repair through a Mechanism Related to Homologous Recombination , 2005, Molecular and Cellular Biology.

[69]  G. Pals,et al.  X-linked inheritance of Fanconi anemia complementation group B , 2004, Nature Genetics.

[70]  Q. Waisfisz,et al.  The Fanconi Anemia Gene Product FANCF Is a Flexible Adaptor Protein* , 2004, Journal of Biological Chemistry.

[71]  H. Joenje,et al.  Multiple TPR motifs characterize the Fanconi anemia FANCG protein. , 2004, DNA repair.

[72]  C. Bishop,et al.  A novel ubiquitin ligase is deficient in Fanconi anemia , 2003, Nature Genetics.

[73]  J. Lamerdin,et al.  Fanconi Anemia FANCG Protein in Mitigating Radiation- and Enzyme-Induced DNA Double-Strand Breaks by Homologous Recombination in Vertebrate Cells , 2003, Molecular and Cellular Biology.

[74]  F. Gergely,et al.  BRCA1-independent ubiquitination of FANCD2. , 2003, Molecular cell.

[75]  Marianne Berwick,et al.  A 20-year perspective on the International Fanconi Anemia Registry (IFAR). , 2003, Blood.

[76]  P. Rosenberg,et al.  Cancer incidence in persons with Fanconi anemia. , 2003, Blood.

[77]  Lei Li,et al.  Nucleotide Excision Repair- and Polymerase η-Mediated Error-Prone Removal of Mitomycin C Interstrand Cross-Links , 2003, Molecular and Cellular Biology.

[78]  A. D’Andrea,et al.  Heterogeneous activation of the Fanconi anemia pathway by patient-derived FANCA mutants. , 2002, Human molecular genetics.

[79]  A. D’Andrea,et al.  The Fanconi anemia protein, FANCE, promotes the nuclear accumulation of FANCC. , 2002, Blood.

[80]  A. D’Andrea,et al.  S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. , 2002, Blood.

[81]  Hans Joenje,et al.  FANCE: the link between Fanconi anaemia complex assembly and activity , 2002, The EMBO journal.

[82]  Hans Joenje,et al.  Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.

[83]  H. Joenje,et al.  Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. , 2002, Human molecular genetics.

[84]  B. Seed,et al.  Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. , 2001, Blood.

[85]  C. Mathew,et al.  Direct interactions of the five known Fanconi anaemia proteins suggest a common functional pathway. , 2001, Human molecular genetics.

[86]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[87]  A. Auerbach,et al.  Stem cell transplantation for the treatment of Fanconi anaemia using a fludarabine‐based cytoreductive regimen and T‐cell‐depleted related HLA‐mismatched peripheral blood stem cell grafts , 2000, British journal of haematology.

[88]  A. D’Andrea,et al.  The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. , 2000, Blood.

[89]  H. Hoehn,et al.  Strong FANCA/FANCG but weak FANCA/FANCC interaction in the yeast 2-hybrid system. , 2000, Blood.

[90]  H. Youssoufian,et al.  Resistance to Mitomycin C Requires Direct Interaction between the Fanconi Anemia Proteins FANCA and FANCG in the Nucleus through an Arginine-rich Domain* , 1999, The Journal of Biological Chemistry.

[91]  Q. Waisfisz,et al.  A physical complex of the Fanconi anemia proteins FANCG/XRCC9 and FANCA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[92]  D. Näf,et al.  Fanconi Anemia Proteins FANCA, FANCC, and FANCG/XRCC9 Interact in a Functional Nuclear Complex , 1999, Molecular and Cellular Biology.

[93]  D. Phillips,et al.  DNA adducts from chemotherapeutic agents. , 1996, Mutation research.

[94]  T. Kunkel,et al.  Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. , 1994, The Journal of biological chemistry.

[95]  R. Fleischmann,et al.  Mutation of a mutL homolog in hereditary colon cancer. , 1994, Science.

[96]  A. Auerbach,et al.  International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. , 1989, Blood.

[97]  R. Chanet,et al.  The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Schäffer,et al.  Stable karyotypes in epithelial cancer cell lines despite high rates of ongoing structural and numerical chromosomal instability. , 2002, Neoplasia.

[99]  S. Kajigaya,et al.  The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. , 2002, Carcinogenesis.

[100]  M. Frankenberg-Schwager Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells , 1990, Radiation and environmental biophysics.