Pyrotechnic Universe

One of the central points of the ekpyrotic cosmological scenario based on Ho˘rava-Witten theory is that we live on a negative tension brane. However, the tension of the visible brane is positive in the usual HW phenomenology with stronger coupling on the hidden brane, both for standard and non-standard embedding. To make ekpyrotic scenario realistic one must solve the problem of the negative cosmological constant on the visible brane and fine-tune the bulk brane potential with an accuracy of 10 − 50 . In terms of a canonically normalized scalar field φ describing the position of the brane, this potential must take a very unusual form V ( φ ) = − 10 − M 4 p We describe the problems which appear when one attempts to obtain this potential in string theory. The mechanism for the generation of density perturbations in this scenario is not brane-specific; it is a particular limiting case of the mechanism of tachyonic preheating. Unlike inflation, this mechanism exponentially amplifies not only quantum fluctuations, but also initial inhomogeneities. As a result, to solve the homogeneity problem in this scenario, one would need the branes to be parallel to each other with an accuracy better than 10 − 60 on a scale 10 30 times greater than the distance between the branes. Thus, at present, inflation remains the only robust mechanism that produces density perturbations with a flat spectrum and simultaneously solves all major cosmological problems.

[1]  L. Kofman,et al.  BPS branes in cosmology , 2001, hep-th/0106241.

[2]  L. Kofman,et al.  Tachyonic instability and dynamics of spontaneous symmetry breaking , 2001, hep-th/0106179.

[3]  P. Steinhardt,et al.  A Brief Comment on"The Pyrotechnic Universe" , 2001, hep-th/0105212.

[4]  P. Steinhardt,et al.  Visible branes with negative tension in heterotic M-theory , 2001, hep-th/0105199.

[5]  P. Steinhardt,et al.  The Ekpyrotic universe: Colliding branes and the origin of the hot big bang , 2001, hep-th/0103239.

[6]  R. Kallosh,et al.  New formulations of D = 10 supersymmetry and D8-O8 domain walls , 2001, hep-th/0103233.

[7]  B. Ovrut,et al.  Five-brane superpotentials in heterotic M theory , 2001, hep-th/0102046.

[8]  B. Ovrut,et al.  Nonperturbative superpotentials from membrane instantons in heterotic M-theory , 2001, hep-th/0101049.

[9]  J. García-Bellido,et al.  Dynamics of symmetry breaking and tachyonic preheating. , 2000, Physical review letters.

[10]  N. Saulina,et al.  Instabilities in heterotic M-theory induced by open membrane instantons , 2000, hep-th/0012104.

[11]  Andrei Linde,et al.  Brane world sum rules , 2000, hep-th/0011225.

[12]  M. Shmakova,et al.  Excision of singularities by stringy domain walls , 2000, hep-th/0010271.

[13]  R. Kallosh,et al.  Supersymmetry in Singular Spaces , 2000, hep-th/0007044.

[14]  B. Ovrut,et al.  Small instanton transitions in heterotic M-theory , 2000, hep-th/0001133.

[15]  T. Banks M-Theory and Cosmology , 1999, hep-th/9911067.

[16]  S. Gubser,et al.  Modeling the fifth dimension with scalars and gravity , 1999, hep-th/9909134.

[17]  M. Wise,et al.  Modulus stabilization with bulk fields , 1999, hep-ph/9907447.

[18]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[19]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[20]  M. Shifman,et al.  Tilting the brane, or some cosmological consequences of the brane Universe , 1999, hep-th/9904021.

[21]  G. Dvali,et al.  Brane Inflation , 1998, hep-ph/9812483.

[22]  B. Ovrut,et al.  Nonstandard embedding and five-branes in heterotic M theory , 1998, hep-th/9808101.

[23]  S. Pokorski,et al.  Beyond the standard embedding in M-theory on S1/Z2 , 1998, hep-ph/9807503.

[24]  B. Ovrut,et al.  Heterotic M-theory in five dimensions , 1998, hep-th/9806051.

[25]  K. Benakli Scales and cosmological applications of M theory , 1998, hep-th/9805181.

[26]  B. Ovrut,et al.  The Universe as a domain wall , 1998, hep-th/9803235.

[27]  M. Yamaguchi,et al.  Supersymmetry breakdown at a hidden wall , 1998, hep-th/9801030.

[28]  B. Ovrut,et al.  On the four-dimensional effective action of strongly coupled heterotic string theory , 1997, hep-th/9710208.

[29]  M. Yamaguchi,et al.  Supersymmetry breaking and soft terms in M theory , 1997, hep-th/9707143.

[30]  A. Vilenkin,et al.  Violation of the weak energy condition in inflating spacetimes , 1997, gr-qc/9702019.

[31]  A. Vilenkin,et al.  Singularities in inflationary cosmology: A Review , 1996, gr-qc/9612036.

[32]  M. Quirós,et al.  Large radii and string unification , 1996, hep-th/9609209.

[33]  A. Tseytlin ‘No-force’ condition and BPS combinations of p-branes in 11 and 10 dimensions , 1996, hep-th/9609212.

[34]  Horava,et al.  Gluino condensation in strongly coupled heterotic string theory. , 1996, Physical review. D, Particles and fields.

[35]  T. Banks,et al.  Couplings and scales in strongly coupled heterotic string theory , 1996, hep-th/9605136.

[36]  E. Witten,et al.  Eleven-dimensional supergravity on a manifold with boundary , 1996, hep-th/9603142.

[37]  S. Ferrara,et al.  M-theory on a Calabi-Yau manifold , 1996, hep-th/9602102.

[38]  E. Witten Strong coupling expansion of Calabi-Yau compactification , 1996, hep-th/9602070.

[39]  A. Vilenkin,et al.  Eternal inflation and the initial singularity. , 1993, Physical review letters.

[40]  Andrei Linde,et al.  Supersymmetry as a cosmic censor. , 1992, Physical review. D, Particles and fields.

[41]  Neil Turok,et al.  TEXTURES AND COSMIC STRUCTURE , 1992 .

[42]  R. Kallosh Supersymmetric black holes , 1992, hep-th/9201029.

[43]  Andrei Linde Particle Physics and Inflationary Cosmology , 1987, Physics Today.

[44]  Andrei Linde The new inflationary universe scenario , 1983 .

[45]  Andrei Linde NONSINGULAR REGENERATING INFLATIONARY UNIVERSE , 1982 .

[46]  J. Gott Creation of open universes from de Sitter space , 1982, Nature.