Fourth-order compact solution of the nonlinear Klein-Gordon equation

In this work we propose a fourth-order compact method for solving the one-dimensional nonlinear Klein-Gordon equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivative and a fourth-order A-stable diagonally-implicit Runge-Kutta-Nyström (DIRKN) method for the time integration of the resulting nonlinear second-order system of ordinary differential equations. The proposed method has fourth order accuracy in both space and time variables and is unconditionally stable. Numerical results obtained from solving several problems possessing periodic, kinks, single and double-soliton waves show that the combination of a compact finite difference approximation of fourth order and a fourth-order A-stable DIRKN method gives an efficient algorithm for solving these problems.

[1]  W. Spotz High-Order Compact Finite Difference Schemes for Computational Mechanics , 1995 .

[2]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[3]  John D. Gibbon,et al.  The sine-Gordon equation as a model classical field theory , 1975 .

[4]  Abdul-Majid Wazwaz,et al.  New travelling wave solutions to the Boussinesq and the Klein–Gordon equations , 2008 .

[5]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[6]  A. G. Bratsos A numerical method for the one‐dimensional sine‐Gordon equation , 2008 .

[7]  S M El Sayed THE DECOMPOSITION METHOD FOR STUDYING THE KLEIN–GORDON EQUATION , 2003 .

[8]  Mehdi Dehghan,et al.  Numerical solution of the Klein–Gordon equation via He’s variational iteration method , 2007 .

[9]  In Jung Lee,et al.  Numerical solution for nonlinear klein-gordon equation by bollocation method with respect to spectral method , 1995 .

[10]  Jianping Zhu,et al.  A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions , 2006 .

[11]  W. Strauss,et al.  Numerical solution of a nonlinear Klein-Gordon equation , 1978 .

[12]  Athanassios G. Bratsos,et al.  The solution of the sine-gordon equation using the method of lines , 1996, Int. J. Comput. Math..

[13]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[14]  David J. Evans,et al.  An efficient approach to the Klein-Gordon equation: an application of the decomposition method , 2006, Int. J. Simul. Process. Model..

[15]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[16]  A. Scott,et al.  A Nonlinear Klein-Gordon Equation , 1969 .

[17]  Mark A. M. Lynch Large amplitude instability in finite difference approximations to the Klein-Gordon equation , 1999 .

[18]  Hans Lindblad,et al.  The weak null condition for Einstein's equations , 2003 .

[19]  L. Vázquez,et al.  Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .

[20]  Athanassios G. Bratsos,et al.  A third order numerical scheme for the two-dimensional sine-Gordon equation , 2007, Math. Comput. Simul..

[21]  Abdul-Majid Wazwaz,et al.  Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations , 2006 .

[22]  A. G. Bratsos On the numerical solution of the Klein-Gordon equation , 2009 .

[23]  J. M. Franco,et al.  Accuracy and linear stability of RKN methods for solving second-order stiff problems , 2009 .

[24]  L. Vázquez,et al.  A LEGENDRE SPECTRAL METHOD FOR SOLVING THE NONLINEAR KLEIN GORDON EQUATION , 1996 .

[25]  A. G. Bratsos The solution of the two-dimensional sine-Gordon equation using the method of lines , 2007 .

[26]  Ming Zhao,et al.  Travelling wave solutions for a nonlinear variant of the PHI-four equation , 2009, Math. Comput. Model..

[27]  Anjan Biswas,et al.  Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations , 2009 .

[28]  Elias Deeba,et al.  A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation , 1996 .

[29]  Yau Shu Wong,et al.  An initial-boundary value problem of a nonlinear Klein-Gordon equation , 1997 .

[30]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[31]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[32]  L. Vu-Quoc,et al.  Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation , 1995 .

[33]  P. W. Partridge,et al.  The dual reciprocity boundary element method , 1991 .

[34]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..