CHEMICAL ANALYSES ON LATE ANTIQUE GLASS FINDS FROM HISTRIA, ROMANIA

[1]  R. Bugoi,et al.  Chemical analyses on Roman and Late Antique glass finds from the Lower Danube: the case of Tropaeum Traiani , 2021, Archaeological and Anthropological Sciences.

[2]  I. Freestone,et al.  A glass workshop in ‘Aqir, Israel and a new type of compositional contamination , 2021, Journal of Archaeological Science: Reports.

[3]  Q. Lemasson,et al.  IBA analyses on glass beads from the Migration Period , 2020 .

[4]  A. Lichtenberger,et al.  ‘Alexandrian’ glass confirmed by hafnium isotopes , 2020, Scientific Reports.

[5]  Ž. Šmit,et al.  Sixth-century AD glassware from Jelica, Serbia—an increasingly complex picture of late antiquity glass composition , 2020, Archaeological and Anthropological Sciences.

[6]  Z. Kasztovszky,et al.  Provenance study on prehistoric obsidian objects found in Romania (Eastern Carpathian Basin and its neighbouring regions) using Prompt Gamma Activation Analysis , 2019, Quaternary International.

[7]  N. Zacharias,et al.  Mycenaean glass from the Argolid, Peloponnese, Greece: A technological and provenance study , 2018, Microchemical Journal.

[8]  A. Lichtenberger,et al.  Geochemistry of Byzantine and Early Islamic glass from Jerash, Jordan: Typology, recycling, and provenance , 2018, Geoarchaeology.

[9]  Z. Kasztovszky,et al.  Stone artefacts and neutrons - Case studies from Hungary , 2018, Journal of Archaeological Science: Reports.

[10]  T. Rehren,et al.  A Late Antique manganese-decolourised glass composition:: Interpreting patterns and mechanisms of distribution , 2018 .

[11]  I. Poll,et al.  Compositional study of Byzantine glass bracelets discovered at the Lower Danube , 2018 .

[12]  I. Kovács,et al.  PIXE and PGAA - Complementary methods for studies on ancient glass artefacts (from Byzantine, late medieval to modern Murano glass) , 2017 .

[13]  L. Adlington The Corning Archaeological Reference Glasses: New Values for “Old” Compositions , 2017 .

[14]  R. Bugoi,et al.  Chemical composition characterization of ancient glass finds from Troesmis—Turcoaia, Romania , 2018, Archaeological and Anthropological Sciences.

[15]  I. Freestone,et al.  Glass groups, glass supply and recycling in late Roman Carthage , 2017, Archaeological and Anthropological Sciences.

[16]  E. Gliozzo The composition of colourless glass: a review , 2017, Archaeological and Anthropological Sciences.

[17]  M. Xanthopoulou,et al.  Technology issues of Byzantine glazed pottery from Corinth, Greece , 2016 .

[18]  F. Giannetti,et al.  Late Antique Glass Vessels and Production Indicators from the Town of Herdonia (Foggia, Italy): New Data on Cao‐Rich/Weak HIMT Glass , 2016 .

[19]  I. Freestone,et al.  Compositional identification of 6th c. AD glass from the Lower Danube , 2016 .

[20]  A. Moropoulou,et al.  Analytical and technological examination of glass tesserae from Hagia Sophia , 2016 .

[21]  L. Pichon,et al.  PIXE–PIGE analyses of Byzantine glass bracelets (10th–13th centuries AD) from Isaccea, Romania , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[22]  H. Thienpont,et al.  Late antique glass distribution and consumption in Cyprus: a chemical study , 2015 .

[23]  E. Horváth,et al.  Non-destructive analyses of bronze artefacts from Bronze Age Hungary using neutron-based methods , 2015 .

[24]  Alexandra Țârlea,et al.  Preliminary results of the excavations at Histria, the Acropolis Centre-South Sector (2013–2014) , 2015 .

[25]  F. Bernardini,et al.  Mineralogical and Chemical Constraints on the Provenance of Copper Age Polished Stone Axes of ‘Ljubljana Type’ from Caput Adriae , 2014 .

[26]  I. Poll,et al.  Investigations of Byzantine glass bracelets from Nufăru, Romania using external PIXE–PIGE methods , 2013 .

[27]  K. Janssens Modern Methods for Analysing Archaeological and Historical Glass: Janssens/Modern , 2013 .

[28]  M. Tóth,et al.  Petro-mineralogy and geochemistry as tools of provenance analysis on archaeological pottery: Study of Inka Period ceramics from Paria, Bolivia , 2012 .

[29]  Z. Révay,et al.  Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor , 2010 .

[30]  Z. Révay Determining elemental composition using prompt gamma activation analysis. , 2009, Analytical chemistry.

[31]  András Markó,et al.  Cold neutron prompt gamma activation analysis - A non-destructive method for characterization of high silica content chipped stone tools and raw materials , 2007 .

[32]  Z. Révay Calculation of uncertainties in prompt gamma activation analysis , 2006 .

[33]  M. Tite,et al.  Natron as a flux in the early vitreous materials industry: sources, beginnings and reasons for decline , 2006 .

[34]  Constantin Bajenaru,et al.  HISTRIA -BAZILICA EPISCOPAL?. CATALOGUL DESCOPERIRILOR DE STIGL? (1984-2000) , 2006 .

[35]  Z. Révay,et al.  Application of Hypermet-PC in PGAA , 2005 .

[36]  Z. Révay,et al.  Comparative archaeometrical study of Roman silver coins by prompt gamma activation analysis and SEM-EDX , 2005 .

[37]  V. Thirion-Merle,et al.  Contribution à l'étude des verres antiques décolorés à l'antimoine , 2004 .

[38]  Z. Révay,et al.  Principles of the PGAA method , 2004 .

[39]  Z. Révay,et al.  A new gamma-ray spectrum catalog and library for PGAA , 2001 .

[40]  M. Wadsak,et al.  Characterisation of surface layers formed under natural environmental conditions on medieval stained glass and ancient copper alloys using SEM, SIMS and atomic force microscopy , 1999 .

[41]  Z. Révay,et al.  Prompt-gamma activation analysis using thek0 approach , 1998 .

[42]  M. Picon,et al.  L'atelier de verrier de Lyon, du Ier siècle apr. J.-C, et l'origine des verres « romains » , 1997 .