Detecting Combinatorial Hierarchy in Tilings Using Derived Voronoi Tessellations
暂无分享,去创建一个
[1] Charles Radin,et al. Space tilings and substitutions , 1995 .
[2] N. Priebe,et al. Characterization of Planar Pseudo-Self-Similar Tilings , 2001, Discret. Comput. Geom..
[3] Boris Solomyak,et al. Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.
[4] Fabien Durand. Contributions a l'etude des suites et systemes dynamiques substitutifs , 1996 .
[5] C. Radin. Symmetry and Tilings , 1999 .
[6] Charles Radin,et al. Space tilings and local isomorphism , 1992 .
[7] A. Forrest. A BRATTELI DIAGRAM FOR COMMUTING HOMEOMORPHISMS OF THE CANTOR SET , 2000 .
[8] C. Radin. Global order from local sources , 1991 .
[9] Boris Solomyak,et al. Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..
[10] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[11] Robin Sibson,et al. Locally Equiangular Triangulations , 1978, Comput. J..
[12] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[13] E. Robinson,et al. The joinings within a class of ℤ2 actions , 1991 .
[14] E. Robinson,et al. The dynamical properties of Penrose tilings , 1996 .
[15] M. Senechal. Quasicrystals and geometry , 1995 .
[16] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[17] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[18] J. Peyriére. FREQUENCY OF PATTERNS IN CERTAIN GRAPHS AND IN PENROSE TILINGS , 1986 .
[19] Hao Wang. Proving theorems by pattern recognition — II , 1961 .
[20] Natalie M. Priebe,et al. Towards a Characterization of Self-Similar Tilings in Terms of Derived Voronoï Tessellations , 2000 .