Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain

[1]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[2]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[3]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[4]  S. Linnarsson,et al.  Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing , 2018, Nature Neuroscience.

[5]  Allon M. Klein,et al.  Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex , 2017, Nature Neuroscience.

[6]  Weizhe Hong,et al.  Detecting Activated Cell Populations Using Single-Cell RNA-Seq , 2017, Neuron.

[7]  A. Lüthi,et al.  Amygdala Inhibitory Circuits Regulate Associative Fear Conditioning , 2017, Biological Psychiatry.

[8]  M. Andermann,et al.  Toward a Wiring Diagram Understanding of Appetite Control , 2017, Neuron.

[9]  Paul Pavlidis,et al.  Transcriptomic correlates of neuron electrophysiological diversity , 2017, bioRxiv.

[10]  Evan Z. Macosko,et al.  Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia , 2017, Neuron.

[11]  J. C. Love,et al.  Seq-Well: A Portable, Low-Cost Platform for High-Throughput Single-Cell RNA-Seq of Low-Input Samples , 2017 .

[12]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[13]  Evan Z. Macosko,et al.  A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types , 2017, Nature Neuroscience.

[14]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[15]  C. S. Chan,et al.  Blunted mGluR Activation Disinhibits Striatopallidal Transmission in Parkinsonian Mice. , 2016, Cell reports.

[16]  G. Cioni,et al.  A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging. , 2016, Human molecular genetics.

[17]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[18]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[19]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[20]  Stephen R Quake,et al.  Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. , 2016, Cell reports.

[21]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[22]  B. Zlokovic,et al.  Pericytes of the neurovascular unit: key functions and signaling pathways , 2016, Nature Neuroscience.

[23]  B. Sabatini,et al.  Globus Pallidus Externus Neurons Expressing parvalbumin Interconnect the Subthalamic Nucleus and Striatal Interneurons , 2016, PloS one.

[24]  Herbert A. Reitsamer,et al.  Brain and Retinal Pericytes: Origin, Function and Role , 2016, Front. Cell. Neurosci..

[25]  Justin K. O’Hare,et al.  Pathway-Specific Striatal Substrates for Habitual Behavior , 2016, Neuron.

[26]  J. Partanen,et al.  Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei , 2016, Development.

[27]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[28]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[29]  Simon Hippenmeyer,et al.  Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries , 2015, Neuron.

[30]  M. Zoli,et al.  Diversity of native nicotinic receptor subtypes in mammalian brain , 2015, Neuropharmacology.

[31]  Jaime Grutzendler,et al.  Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes , 2015, Neuron.

[32]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[33]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[34]  KouichiC . Nakamura,et al.  Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus , 2015, The Journal of Neuroscience.

[35]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[36]  I. Gotlib,et al.  Identification of a direct GABAergic pallidocortical pathway in rodents , 2015, The European journal of neuroscience.

[37]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[38]  Caroline A. Johnson,et al.  A direct GABAergic output from the basal ganglia to frontal cortex , 2014, Nature.

[39]  M. M. Morrow,et al.  New Roles for the External Globus Pallidus in Basal Ganglia Circuits and Behavior , 2014, The Journal of Neuroscience.

[40]  F. Cicchetti,et al.  Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. , 2014, Cell reports.

[41]  W. Regehr,et al.  The Substantia Nigra Conveys Target-Dependent Excitatory and Inhibitory Outputs from the Basal Ganglia to the Thalamus , 2014, The Journal of Neuroscience.

[42]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[43]  Ludo Waltman,et al.  A smart local moving algorithm for large-scale modularity-based community detection , 2013, The European Physical Journal B.

[44]  John D. Storey,et al.  Statistical significance of variables driving systematic variation in high-dimensional data , 2013, Bioinform..

[45]  Hilmar Bading,et al.  Nuclear calcium signalling in the regulation of brain function , 2013, Nature Reviews Neuroscience.

[46]  Xingyang Liu,et al.  Overexpression of clusterin promotes angiogenesis via the vascular endothelial growth factor in primary ovarian cancer. , 2013, Molecular medicine reports.

[47]  A. Munnich,et al.  Phenotype and genotype in 101 males with X-linked creatine transporter deficiency , 2013, Journal of Medical Genetics.

[48]  S. Sternson Hypothalamic Survival Circuits: Blueprints for Purposive Behaviors , 2013, Neuron.

[49]  Veeranna,et al.  Neurofilaments at a glance , 2012, Journal of Cell Science.

[50]  KouichiC . Nakamura,et al.  Dichotomous Organization of the External Globus Pallidus , 2012, Neuron.

[51]  David J. Anderson,et al.  Optogenetics, Sex, and Violence in the Brain: Implications for Psychiatry , 2012, Biological Psychiatry.

[52]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[53]  Bernardo L. Sabatini,et al.  Recurrent network activity drives striatal synaptogenesis , 2012, Nature.

[54]  J. Tsien,et al.  NMDA Receptors in Dopaminergic Neurons Are Crucial for Habit Learning , 2011, Neuron.

[55]  C. Rosen,et al.  Insulin-like Growth Factor Binding Protein-4 Differentially Inhibits Growth Factor-induced Angiogenesis* , 2011, The Journal of Biological Chemistry.

[56]  G. Ming,et al.  Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions , 2011, Neuron.

[57]  R. Aledo,et al.  Fibulin-5 Is Up-regulated by Hypoxia in Endothelial Cells through a Hypoxia-inducible Factor-1 (HIF-1α)-dependent Mechanism* , 2010, The Journal of Biological Chemistry.

[58]  Bruce P. Bean,et al.  Sodium Entry during Action Potentials of Mammalian Neurons: Incomplete Inactivation and Reduced Metabolic Efficiency in Fast-Spiking Neurons , 2009, Neuron.

[59]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[60]  Kyle S. Smith,et al.  Ventral pallidum roles in reward and motivation , 2009, Behavioural Brain Research.

[61]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[62]  W. Catterall,et al.  Functional properties and differential neuromodulation of Nav1.6 channels , 2008, Molecular and Cellular Neuroscience.

[63]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[64]  Ethan M. Goldberg,et al.  K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons , 2008, Neuron.

[65]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[66]  M. L. de Ceballos,et al.  Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by l‐DOPA , 2008, The European journal of neuroscience.

[67]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[68]  M. Zoli,et al.  Brain nicotinic acetylcholine receptors: native subtypes and their relevance. , 2006, Trends in pharmacological sciences.

[69]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[70]  K. Boström,et al.  Matrix GLA Protein Stimulates VEGF Expression through Increased Transforming Growth Factor-β1 Activity in Endothelial Cells* , 2004, Journal of Biological Chemistry.

[71]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[72]  T. Chan-Ling,et al.  Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. , 2004, Investigative ophthalmology & visual science.

[73]  Joshua D. Wythe,et al.  A critical role for elastin signaling in vascular morphogenesis and disease , 2003, Development.

[74]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[75]  P. Voorn,et al.  Expression of Enkephalin in Pallido‐Striatal Neurons , 1999, Annals of the New York Academy of Sciences.

[76]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[77]  H. Kita,et al.  Parvalbumin-immunopositive neurons in rat globus pallidus: a light and electron microscopic study , 1994, Brain Research.

[78]  V Nehls,et al.  Heterogeneity of microvascular pericytes for smooth muscle type alpha- actin , 1991, The Journal of cell biology.

[79]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[80]  C. W. Ragsdale,et al.  Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Z. Nadasdy,et al.  Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. , 2015, Cerebral cortex.

[82]  H. Kita Globus pallidus external segment. , 2007, Progress in brain research.

[83]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[84]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.