A Fourier Approach to the Computation of Conditional Value-at-Risk and Optimized Certainty Equivalents

We consider the class of risk measures associated with optimized certainty equivalents. This class includes several popular examples, such as conditional value-at-risk (CVaR) and monotone mean–variance. Numerical schemes are developed for the computation of these risk measures using Fourier transform methods. This leads, in particular, to a very competitive method for the calculation of CVaR, which is comparable in computational time to the calculation of VaR. We also develop methods for the efficient computation of risk contributions.

[1]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[2]  Martin Schmelzle,et al.  Option Pricing Formulae using Fourier Transform : Theory and Application , 2010 .

[3]  Ole E. Barndorff-Nielsen,et al.  Apparent scaling , 2001, Finance Stochastics.

[4]  E. Eberlein Application of Generalized Hyperbolic Lévy Motions to Finance , 2001 .

[5]  Abaxbank,et al.  Spectral Measures of Risk : a Coherent Representation of Subjective Risk Aversion , 2002 .

[6]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[7]  David M. Kreps,et al.  On Intertemporal Preferences in Continuous Time: The Case of Certainty , 2015 .

[8]  Michael Kupper,et al.  Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..

[9]  Amir Dembo,et al.  Large portfolio losses , 2002, Finance Stochastics.

[10]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[11]  Reiichiro Kawai A multivariate Lévy process model with linear correlation , 2009 .

[12]  A. Cherny,et al.  Divergence Utilities , 2007 .

[13]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[14]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[15]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[16]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[17]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[18]  Romain Deguest,et al.  Robustness and sensitivity analysis of risk measurement procedures , 2008 .

[19]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[20]  Gerry Leversha,et al.  Introduction to numerical analysis (3rd edn), by J. Stoer and R. Bulirsch. Pp. 744. £49. 2002. ISBN 0 387 95452 X (Springer-Verlag). , 2004, The Mathematical Gazette.

[21]  Massimo Marinacci,et al.  On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility , 2011 .

[22]  Jörn Dunkel,et al.  Stochastic Root Finding and Efficient Estimation of Convex Risk Measures , 2010, Oper. Res..

[23]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[24]  E. Jouini,et al.  Law Invariant Risk Measures Have the Fatou Property , 2005 .

[25]  Stefan Weber,et al.  Stochastic root finding for optimized certainty equivalents , 2013, 2013 Winter Simulations Conference (WSC).

[26]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[27]  Volker Krätschmer,et al.  Comparative and qualitative robustness for law-invariant risk measures , 2012, Finance Stochastics.

[28]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[29]  Patrick Cheridito,et al.  Dual characterization of properties of risk measures on Orlicz hearts , 2008 .

[30]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[31]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[32]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[33]  aaron. kim Computing VaR and AVaR In Infinitely Divisible Distributions , 2009 .

[34]  L. Montrucchio,et al.  RISK MEASURES: RATIONALITY AND DIVERSIFICATION , 2010 .

[35]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[36]  Gilles Pagès,et al.  Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling , 2008, Monte Carlo Methods Appl..

[37]  D. Madan,et al.  Non Gaussian Models of Dependence in Returns , 2009 .

[38]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[39]  M. Kalkbrener,et al.  Efficient calculation of expected shortfall contributions in large credit portfolios , 2007 .

[40]  S. Raible,et al.  Lévy Processes in Finance: Theory, Numerics, and Empirical Facts , 2000 .

[41]  E. Eberlein,et al.  The Generalized Hyperbolic Model: Financial Derivatives and Risk Measures , 2002 .

[42]  Patrick Cheridito,et al.  RISK MEASURES ON ORLICZ HEARTS , 2009 .

[43]  E. Eberlein,et al.  Analysis of Fourier Transform Valuation Formulas and Applications , 2008, 0809.3405.

[44]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[45]  Sara Biagini,et al.  A Unified Framework for Utility Maximization Problems: an Orlicz space approach , 2007, 0806.2582.