Mean First Passage Time for a Small Rotating Trap inside a Reflective Disk

We compute the mean first passage time (MFPT) for a Brownian particle inside a two-dimensional disk with reflective boundaries and a small interior trap that is rotating at a constant angular velocity. The inherent symmetry of the problem allows for a detailed analytic study of the situation. For a given angular velocity, we determine the optimal radius of rotation that minimizes the average MFPT over the disk. Several distinct regimes are observed, depending on the ratio between the angular velocity $\omega$ and the trap size $\varepsilon$, and several intricate transitions are analyzed using the tools of asymptotic analysis and Fourier series. For $\omega\sim\mathcal{O}(1)$, we compute a critical value $\omega_c>0$ such that the optimal trap location is at the origin whenever $\omega \omega_c$. In the regime $1\ll\omega\ll\mathcal{O}(\varepsilon^{-1})$ the optimal trap path approaches the boundary of the disk. However, as $\omega$ is further increased to $\mat...

[1]  Najib Laraqi,et al.  Temperature and division of heat in a pin-on-disc frictional device—Exact analytical solution , 2009 .

[2]  Michael J. Ward,et al.  An Asymptotic Study of Oxygen Transport from Multiple Capillaries to Skeletal Muscle Tissue , 2000, SIAM J. Appl. Math..

[3]  Lebowitz,et al.  Asymptotic behavior of densities in diffusion-dominated annihilation reactions. , 1988, Physical review letters.

[4]  Zeev Schuss,et al.  The Narrow Escape Problem—A Short Review of Recent Results , 2012, J. Sci. Comput..

[5]  Satya N. Majumdar,et al.  Persistence and first-passage properties in nonequilibrium systems , 2013, 1304.1195.

[6]  O Bénichou,et al.  Pascal principle for diffusion-controlled trapping reactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Daniel Coombs,et al.  Diffusion on a Sphere with Localized Traps: Mean First Passage Time, Eigenvalue Asymptotics, and Fekete Points , 2009, SIAM J. Appl. Math..

[8]  M. Bahrami,et al.  Geometrical Effects on the Temperature Distribution in a Half-Space Due to a Moving Heat Source , 2011 .

[9]  Geoffrey A. Hollinger,et al.  Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.

[10]  Z. Schuss,et al.  Narrow Escape, Part II: The Circular Disk , 2004, math-ph/0412050.

[11]  P. L. Krapivsky,et al.  Survival of an evasive prey , 2009, Proceedings of the National Academy of Sciences.

[12]  M. Ward,et al.  Asymptotic Methods For PDE Problems In Fluid Mechanics and Related Systems With Strong Localized Perturbations In Two-Dimensional Domains , 2010 .

[13]  Byron Goldstein,et al.  Diffusion Limited Reactions , 2007, SIAM J. Appl. Math..

[14]  Luca Giuggioli,et al.  Encounter times in overlapping domains: application to epidemic spread in a population of territorial animals. , 2012, Physical review letters.

[15]  Athanasios Kehagias,et al.  Cops and invisible robbers: The cost of drunkenness , 2012, Theor. Comput. Sci..

[16]  I. Kupka,et al.  The probability of an encounter of two Brownian particles before escape , 2009, 0906.3631.

[17]  First passage time problems and resonant behavior on a fluctuating lattice , 1994 .

[18]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[19]  H. Wio,et al.  Diffusion in fluctuating media: resonant activation , 2004 .

[20]  O Bénichou,et al.  Optimal search strategies for hidden targets. , 2005, Physical review letters.

[21]  Szabó,et al.  Diffusion-controlled reactions with mobile traps. , 1988, Physical review letters.

[22]  Michael J. Ward,et al.  An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere , 2010, Multiscale Model. Simul..

[23]  Z. Schuss,et al.  The narrow escape problem for diffusion in cellular microdomains , 2007, Proceedings of the National Academy of Sciences.

[24]  Transport and the first passage time problem with application to cold atoms in optical traps , 2013, 1305.0081.

[25]  O. Bénichou,et al.  From first-passage times of random walks in confinement to geometry-controlled kinetics , 2014 .

[27]  O. Bénichou,et al.  Searching fast for a target on DNA without falling to traps. , 2009, Physical review letters.

[28]  Exact asymptotics for one-dimensional diffusion with mobile traps. , 2002, Physical review letters.

[29]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[30]  E. R. Rang Narrow Escape. , 1965, Science.

[31]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Olivier Bénichou,et al.  First-passage quantities of Brownian motion in a bounded domain with multiple targets: a unified approach , 2011 .

[34]  T. Chou,et al.  First passage times in homogeneous nucleation and self-assembly. , 2012, The Journal of chemical physics.

[35]  Theodore Kolokolnikov,et al.  Drunken robber, tipsy cop: First passage times, mobile traps, and Hopf bifurcations , 2014, 1410.1391.

[36]  Coherent Stochastic Resonance in One Dimensional Diffusion with One Reflecting and One Absorbing Boundaries , 2000, cond-mat/0011271.

[37]  Natasha Komarov,et al.  Capturing the Drunk Robber on a Graph , 2013, 1305.4559.

[38]  F. Wilczek,et al.  Particle–antiparticle annihilation in diffusive motion , 1983 .

[39]  R. Metzler,et al.  Residual mean first-passage time for jump processes: theory and applications to Lévy flights and fractional Brownian motion , 2011, 1103.4961.

[40]  Andrej Kosmrlj,et al.  How a protein searches for its site on DNA: the mechanism of facilitated diffusion , 2009 .

[41]  T. R. Anthony,et al.  Heat treating and melting material with a scanning laser or electron beam , 1977 .

[42]  O. Bénichou,et al.  Trapping reactions with randomly moving traps: exact asymptotic results for compact exploration. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  G. Weiss,et al.  First passage time problems in time-dependent fields , 1988 .

[44]  Alan Gabel,et al.  Can a lamb reach a haven before being eaten by diffusing lions? , 2012, 1203.2985.

[45]  Bartłomiej Dybiec,et al.  Resonant activation in the presence of nonequilibrated baths. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Michael J. Ward,et al.  An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part I: Two-Dimensional Domains , 2010, Multiscale Model. Simul..

[47]  Martin Z. Bazant,et al.  Steady advection–diffusion around finite absorbers in two-dimensional potential flows , 2004, Journal of Fluid Mechanics.

[48]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[49]  David Holcman,et al.  Time scale of diffusion in molecular and cellular biology , 2014 .

[50]  Rongfeng Sun,et al.  Survival Probability of a Random Walk Among a Poisson System of Moving Traps , 2010, 1010.3958.

[51]  Michael J. Ward,et al.  Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps , 2005, European Journal of Applied Mathematics.

[52]  David Holcman,et al.  The Narrow Escape Problem , 2014, SIAM Rev..