Facial emotion recognition with the hidden Markov model

This paper presents a simple algorithm for an automatic recognition of facial expressions. First we extract feature points, and then we define distances using these features. The variation of these distances is used to characterize the transition from one emotion to another. Our approach is based on the use of a hidden Markov model whose states can recognize facial expressions.

[1]  P. Ekman,et al.  Facial action coding system: a technique for the measurement of facial movement , 1978 .

[2]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[3]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[5]  Timothy F. Cootes,et al.  Face Recognition Using Active Appearance Models , 1998, ECCV.

[6]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[7]  Marius Malciu,et al.  Approches orientées modèle pour la capture des mouvements du visage en vision par ordinateur , 2001 .

[8]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[10]  Zakia Hammal,et al.  Segmentation des Traits du Visage, Analyse et Reconnaissance des Expressions Faciales par les Modèles de Croyance Transférable. , 2006 .

[11]  Yongzhao Zhan,et al.  Facial Expression Recognition Based on Hybrid Features and Fusing Discrete HMMs , 2007, HCI.

[12]  Tae-Seong Kim,et al.  Human Facial Expression Recognition Using Fisher Independent Component Analysis and Hidden Markov Model , 2009 .