Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design
暂无分享,去创建一个
[1] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[2] Massimiliano Vasile,et al. A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..
[3] Carlos A. Coello Coello,et al. Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms , 2008, GECCO '08.
[4] John W. Hartmann,et al. Optimal multi-objective low-thrust spacecraft trajectories , 2000 .
[5] David E. Goldberg,et al. Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.
[6] Kalyanmoy Deb,et al. Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.
[7] P. Loridan. ε-solutions in vector minimization problems , 1984 .
[8] Massimiliano Vasile,et al. Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization , 2009 .
[9] Günter Rudolph,et al. Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).
[10] Kalyanmoy Deb,et al. An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.
[11] Dario Izzo,et al. Lambert's Problem for Exponential Sinusoids , 2006 .
[12] David Corne,et al. Bounded Pareto Archiving: Theory and Practice , 2004, Metaheuristics for Multiobjective Optimisation.
[13] Thomas Hanne,et al. On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..
[14] Günter Rudolph,et al. Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets , 2007, EMO.
[15] Massimiliano Vasile,et al. Designing optimal low-thrust gravity-assist trajectories using space pruning and a multi-objective approach , 2009 .
[16] E. Talbi,et al. Approximating the -Efficient Set of an MOP with Stochastic Search Algorithms , 2007 .
[17] Eckart Zitzler,et al. Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .
[18] R. Battin. An introduction to the mathematics and methods of astrodynamics , 1987 .
[19] Massimiliano Vasile,et al. Approximate Solutions in Space Mission Design , 2008, PPSN.
[20] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[21] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[22] Kalyanmoy Deb,et al. Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..
[23] H. Fawcett. Manual of Political Economy , 1995 .
[24] D. J. White,et al. Epsilon efficiency , 1986 .
[25] Marco Laumanns,et al. Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.
[26] Carlos A. Coello Coello,et al. Approximating the epsilon -Efficient Set of an MOP with Stochastic Search Algorithms , 2007, MICAI.