Three conjectures about character sums

Abstract. We establish that three well-known and rather different looking conjectures about Dirichlet characters and their (weighted) sums, (concerning the Pólya-Vinogradov theorem for maximal character sums, the maximal admissible range in Burgess’ estimate for short character sums, and upper bounds for L(1, χ) and L(1 + it, χ)) are more-or-less “equivalent”. We also obtain a new mean value theorem for logarithmically weighted sums of 1-bounded multiplicative functions.

[1]  Alexander P. Mangerel,et al.  Large odd order character sums and improvements of the Pólya-Vinogradov inequality , 2017, Transactions of the American Mathematical Society.

[2]  Gennady Bachman,et al.  Exponential sums with multiplicative coefficients , 1999 .

[3]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[4]  Andrew Granville,et al.  Exponential sums with multplicative coefficients and applications , 2022 .

[5]  A new proof of Halász’s theorem, and its consequences , 2017, Compositio Mathematica.

[6]  R. R. Hall,et al.  Effective mean value estimates for complex multiplicative functions , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[8]  John B. Friedlander,et al.  Opera De Cribro , 2010 .

[9]  Jessika Eichel,et al.  Introduction To Analytic And Probabilistic Number Theory , 2016 .

[10]  A. Granville,et al.  Decay of Mean Values of Multiplicative Functions , 1999, Canadian Journal of Mathematics.

[11]  Multiplicative mimicry and improvements of the Polya-Vinogradov inequality , 2009, 0911.5547.

[12]  LARGE EVEN ORDER CHARACTER SUMS , 2012, 1205.3525.

[13]  Alexander P. Mangerel Short Character Sums and the Pólya–Vinogradov Inequality , 2019, The Quarterly Journal of Mathematics.

[14]  Leo Goldmakher,et al.  Improving the Burgess bound via Pólya-Vinogradov , 2017, Proceedings of the American Mathematical Society.

[15]  D. A. Burgess On Character Sums and Primitive Roots , 1962 .

[16]  Andrew Granville,et al.  Negative values of truncations to L(1 , 2005 .

[17]  Terence Tao,et al.  The Hardy--Littlewood--Chowla conjecture in the presence of a Siegel zero , 2021 .

[18]  A. Hildebrand Multiplicative functions on arithmetic progressions , 1990 .

[19]  Pólya–Vinogradov and the least quadratic nonresidue , 2013, 1311.7556.

[20]  Large character sums: Burgess's theorem and zeros of $L$-functions , 2015, 1501.01804.