Nonlinear Approximation Rates and Besov Regularity for Elliptic PDEs on Polyhedral Domains

We investigate the Besov regularity for solutions of elliptic PDEs. This is based on regularity results in Babuska–Kondratiev spaces. Following the argument of Dahlke and DeVore, we first prove an embedding of these spaces into the scale $$B^r_{\tau ,\tau }(D)$$Bτ,τr(D) of Besov spaces with $$\frac{1}{\tau }=\frac{r}{d}+\frac{1}{p}$$1τ=rd+1p. This scale is known to be closely related to $$n$$n-term approximation w.r.t. wavelet systems, and also adaptive finite element approximation. Ultimately, this yields the rate $$n^{-r/d}$$n-r/d for $$u\in {\mathcal {K}}^m_{p,a}(D)\cap H^s_p(D)$$u∈Kp,am(D)∩Hps(D) for $$r<r^*\le m$$r<r∗≤m. In order to improve this rate to $$n^{-m/d}$$n-m/d, we leave the scale $$B^r_{\tau ,\tau }(D)$$Bτ,τr(D) and instead consider the spaces $$B^m_{\tau ,\infty }(D)$$Bτ,∞m(D). We determine conditions under which the space $${\mathcal {K}}^m_{p,a}(D)\cap H^s_p(D)$$Kp,am(D)∩Hps(D) is embedded into some space $$B^m_{\tau ,\infty }(D)$$Bτ,∞m(D) for some $$\frac{m}{d}+\frac{1}{p}>\frac{1}{\tau }\ge \frac{1}{p}$$md+1p>1τ≥1p, which in turn indeed yields the desired $$n$$n-term rate. As an intermediate step, we also prove an extension theorem for Kondratiev spaces.

[1]  Winfried Sickel,et al.  Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.

[2]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[3]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[4]  V. Nistor,et al.  Well-posedness and Regularity for the Elasticity Equation with Mixed Boundary Conditions on Polyhedral Domains and Domains with Cracks , 2010 .

[5]  Y. Meyer Wavelets and Operators , 1993 .

[6]  B. Muckenhoupt Hardy's inequality with weights , 1972 .

[7]  H. Triebel Theory Of Function Spaces , 1983 .

[8]  A. Madrane,et al.  ENTROPY CONSERVATIVE AND ENTROPY STABLE FINITE VOLUME SCHEMES FOR MULTI-DIMENSIONAL CONSERVATION LAWS ON UNSTRUCTURED MESHES , 2011 .

[9]  Vladimir Maz’ya,et al.  Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations , 2000 .

[10]  P. Lizorkin,et al.  Spaces of Functions of Generalized Smoothness , 1987 .

[11]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[12]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings II , 2006, J. Complex..

[13]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[14]  Ivo Babuška,et al.  Regularity of the solutions for elliptic problems on nonsmooth domains in ℝ3, Part I: countably normed spaces on polyhedral domains , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[16]  H. Triebel Theory of Function Spaces III , 2008 .

[17]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings I , 2006, J. Complex..

[18]  Stephan Dahlke,et al.  Besov regularity for second order elliptic boundary value problems with variable coefficients , 1998 .

[19]  Stephan Dahlke,et al.  Besov regularity of edge singularities for the Poisson equation in polyhedral domains , 2002, Numer. Linear Algebra Appl..

[20]  Ludmil Zikatanov,et al.  Interface and mixed boundary value problems on $n$-dimensional polyhedral domains , 2010, Documenta Mathematica.

[21]  Vyacheslav S. Rychkov,et al.  On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .

[22]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[23]  Susana D. Moura,et al.  Function spaces of generalised smoothness , 2001 .

[24]  Stephan Dahlke,et al.  Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .

[25]  Winfried Sickel,et al.  Besov Regularity for the Poisson Equation in Smooth and Polyhedral Cones , 2009 .

[26]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[27]  Pedro Morin,et al.  Approximation classes for adaptive higher order finite element approximation , 2013, Math. Comput..