The Theta-Gamma Neural Code

[1]  Arne D. Ekstrom,et al.  A comparative study of human and rat hippocampal low‐frequency oscillations during spatial navigation , 2013, Hippocampus.

[2]  H. Luhmann,et al.  Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. , 2013, Cerebral cortex.

[3]  W. Singer,et al.  Gamma oscillations: precise temporal coordination without a metronome , 2013, Trends in Cognitive Sciences.

[4]  Nelson J. Trujillo-Barreto,et al.  Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG , 2013, NeuroImage.

[5]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[6]  Sabine Kastner,et al.  Electrophysiological Low-Frequency Coherence and Cross-Frequency Coupling Contribute to BOLD Connectivity , 2012, Neuron.

[7]  Dimitri M. Kullmann,et al.  Efficient “Communication through Coherence” Requires Oscillations Structured to Minimize Interference between Signals , 2012, PLoS Comput. Biol..

[8]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[9]  Matthew H. Davis,et al.  Neural Oscillations Carry Speech Rhythm through to Comprehension , 2012, Front. Psychology.

[10]  Wolf Singer,et al.  Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory , 2012, The Journal of Neuroscience.

[11]  Gustavo Deco,et al.  Communication before coherence , 2012, The European journal of neuroscience.

[12]  Margaret F. Carr,et al.  Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay , 2012, Neuron.

[13]  Surya Ganguli,et al.  Behavioral/systems/cognitive Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum , 2022 .

[14]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[15]  Aline Villavicencio,et al.  Alternating predictive and short‐term memory modes of entorhinal grid cells , 2012, Hippocampus.

[16]  Anoopum S. Gupta,et al.  Segmentation of spatial experience by hippocampal theta sequences , 2012, Nature Neuroscience.

[17]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[18]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[19]  Kara A. Dyckman,et al.  Pre-Cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control , 2012, The Journal of Neuroscience.

[20]  M. Escabí,et al.  Theta and gamma coherence across the septotemporal axis during distinct behavioral states , 2012, Hippocampus.

[21]  David Poeppel,et al.  Cortical oscillations and speech processing: emerging computational principles and operations , 2012, Nature Neuroscience.

[22]  M. Kahana,et al.  Human hippocampal theta oscillations and the formation of episodic memories , 2012, Hippocampus.

[23]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[24]  Gregor M. Hörzer,et al.  Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance , 2012, Nature Neuroscience.

[25]  W. Singer,et al.  Orientation selectivity and noise correlation in awake monkey area V1 are modulated by the gamma cycle , 2012, Proceedings of the National Academy of Sciences.

[26]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[27]  R. Schmidt,et al.  Cross-Frequency Phase–Phase Coupling between Theta and Gamma Oscillations in the Hippocampus , 2012, The Journal of Neuroscience.

[28]  Inah Lee,et al.  Neural Correlates of Object-in-Place Learning in Hippocampus and Prefrontal Cortex , 2011, The Journal of Neuroscience.

[29]  Matthew C Smear,et al.  Perception of sniff phase in mouse olfaction , 2011, Nature.

[30]  R. Romo,et al.  α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking , 2011, Proceedings of the National Academy of Sciences.

[31]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[32]  G. Buzsáki,et al.  A 4 Hz Oscillation Adaptively Synchronizes Prefrontal, VTA, and Hippocampal Activities , 2011, Neuron.

[33]  Neil Burgess,et al.  Models of place and grid cell firing and theta rhythmicity , 2011, Current Opinion in Neurobiology.

[34]  A. Graybiel,et al.  Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum , 2011, Proceedings of the National Academy of Sciences.

[35]  Ole Jensen,et al.  Alpha Oscillations Correlate with the Successful Inhibition of Unattended Stimuli , 2011, Journal of Cognitive Neuroscience.

[36]  H. Zhang,et al.  A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations. , 2011, Journal of neurophysiology.

[37]  R. VanRullen,et al.  The Phase of Ongoing Oscillations Mediates the Causal Relation between Brain Excitation and Visual Perception , 2011, The Journal of Neuroscience.

[38]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[39]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[40]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[41]  Oded Ghitza,et al.  Linking Speech Perception and Neurophysiology: Speech Decoding Guided by Cascaded Oscillators Locked to the Input Rhythm , 2011, Front. Psychology.

[42]  M. Shapiro,et al.  Dynamic Coding of Goal-Directed Paths by Orbital Prefrontal Cortex , 2011, The Journal of Neuroscience.

[43]  B. Staresina,et al.  Medial Temporal Theta/Alpha Power Enhancement Precedes Successful Memory Encoding: Evidence Based on Intracranial EEG , 2011, The Journal of Neuroscience.

[44]  C. Schroeder,et al.  Neuronal Mechanisms and Attentional Modulation of Corticothalamic Alpha Oscillations , 2011, The Journal of Neuroscience.

[45]  R. VanRullen,et al.  This Is the Rhythm of Your Eyes: The Phase of Ongoing Electroencephalogram Oscillations Modulates Saccadic Reaction Time , 2011, The Journal of Neuroscience.

[46]  Rafal Bogacz,et al.  Quantifying phase-amplitude coupling in neuronal network oscillations. , 2011, Progress in biophysics and molecular biology.

[47]  Matthijs A. A. van der Meer,et al.  Theta Phase Precession in Rat Ventral Striatum Links Place and Reward Information , 2011, The Journal of Neuroscience.

[48]  Michael X. Cohen,et al.  Single-Trial Regression Elucidates the Role of Prefrontal Theta Oscillations in Response Conflict , 2011, Front. Psychology.

[49]  Aneta Brzezicka,et al.  Short-term memory capacity (7±2) predicted by theta to gamma cycle length ratio , 2011, Neurobiology of Learning and Memory.

[50]  Marieke K. van Vugt,et al.  Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG , 2011, NeuroImage.

[51]  J. Boyd,et al.  Extrastriate Visual Cortex , 2011 .

[52]  Rufin VanRullen,et al.  The Gamma Slideshow: Object-Based Perceptual Cycles in a Model of the Visual Cortex , 2010, Front. Hum. Neurosci..

[53]  R. Dolan,et al.  Peak Frequency in the Theta and Alpha Bands Correlates with Human Working Memory Capacity , 2010, Front. Hum. Neurosci..

[54]  György Buzsáki,et al.  Neural Syntax: Cell Assemblies, Synapsembles, and Readers , 2010, Neuron.

[55]  R. Knight,et al.  Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks , 2010, Front. Hum. Neurosci..

[56]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[57]  Aneta Brzezicka,et al.  Information Transfer During a Transitive Reasoning Task , 2010, Brain Topography.

[58]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[59]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[60]  Mehdi Khamassi,et al.  Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning , 2010, Neuron.

[61]  E. Martin,et al.  Simultaneous EEG-fMRI during a Working Memory Task: Modulations in Low and High Frequency Bands , 2010, PloS one.

[62]  W. Penny,et al.  Theta-Coupled Periodic Replay in Working Memory , 2010, Current Biology.

[63]  U. Rutishauser,et al.  Human memory strength is predicted by theta-frequency phase-locking of single neurons , 2010, Nature.

[64]  M. Shapiro,et al.  Bidirectional changes to hippocampal theta–gamma comodulation predict memory for recent spatial episodes , 2010, Proceedings of the National Academy of Sciences.

[65]  Brian Litt,et al.  Behavioral / Systems / Cognitive Hippocampal Gamma Oscillations Increase with Memory Load , 2010 .

[66]  J. Matias Palva,et al.  Graph properties of synchronized cortical networks during visual working memory maintenance , 2010, NeuroImage.

[67]  J. Fell,et al.  Cross-frequency coupling supports multi-item working memory in the human hippocampus , 2010, Proceedings of the National Academy of Sciences.

[68]  A. Compston The Berger rhythm: potential changes from the occipital lobes in man. , 2010, Brain : a journal of neurology.

[69]  Markus Siegel,et al.  Phase-dependent neuronal coding of objects in short-term memory , 2009, Proceedings of the National Academy of Sciences.

[70]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[71]  Jesse Jackson,et al.  Self-generated theta oscillations in the hippocampus , 2009, Nature Neuroscience.

[72]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[73]  A. Karim,et al.  Brain Oscillatory Substrates of Visual Short-Term Memory Capacity , 2009, Current Biology.

[74]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[75]  Richard Kempter,et al.  Single-Trial Phase Precession in the Hippocampus , 2009, The Journal of Neuroscience.

[76]  P. Fries,et al.  Gamma-Band Synchronization in the Macaque Hippocampus and Memory Formation , 2009, The Journal of Neuroscience.

[77]  S. Hughes,et al.  Temporal Framing of Thalamic Relay-Mode Firing by Phasic Inhibition during the Alpha Rhythm , 2009, Neuron.

[78]  Jos J. Eggermont,et al.  Coupling of mesoscopic brain oscillations: Recent advances in analytical and theoretical perspectives , 2009, Progress in Neurobiology.

[79]  J. Berke,et al.  Fast oscillations in cortical‐striatal networks switch frequency following rewarding events and stimulant drugs , 2009, The European journal of neuroscience.

[80]  Michael J. Kahana,et al.  Neural Representations of Individual Stimuli in Humans Revealed by Gamma-Band Electrocorticographic Activity , 2009, The Journal of Neuroscience.

[81]  E. Miller,et al.  Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations , 2009, Neuron.

[82]  R. VanRullen,et al.  The Phase of Ongoing EEG Oscillations Predicts Visual Perception , 2009, The Journal of Neuroscience.

[83]  Marco Idiart,et al.  A Second Function of Gamma Frequency Oscillations: An E%-Max Winner-Take-All Mechanism Selects Which Cells Fire , 2009, The Journal of Neuroscience.

[84]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[85]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[86]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[87]  A. Villringer,et al.  Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI‐BOLD signal in primary somatosensory and motor cortex , 2009, Human brain mapping.

[88]  E. Düzel,et al.  Medial temporal theta state before an event predicts episodic encoding success in humans , 2009, Proceedings of the National Academy of Sciences.

[89]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[90]  Diane M. Beck,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[91]  Robert Oostenveld,et al.  Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance , 2009, NeuroImage.

[92]  John J. B. Allen,et al.  Prelude to and Resolution of an Error: EEG Phase Synchrony Reveals Cognitive Control Dynamics during Action Monitoring , 2009, The Journal of Neuroscience.

[93]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[94]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[95]  Anthony M Zador,et al.  Millisecond-scale differences in neural activity in auditory cortex can drive decisions , 2008, Nature Neuroscience.

[96]  Asohan Amarasingham,et al.  Internally Generated Cell Assembly Sequences in the Rat Hippocampus , 2008, Science.

[97]  Á. Pascual-Leone,et al.  Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. , 2008, Cerebral cortex.

[98]  G. Buzsáki,et al.  A neural coding scheme formed by the combined function of gamma and theta oscillations. , 2008, Schizophrenia bulletin.

[99]  André A Fenton,et al.  Discharge Properties of Hippocampal Neurons during Performance of a Jump Avoidance Task , 2008, The Journal of Neuroscience.

[100]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[101]  Adriano B. L. Tort,et al.  Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures , 2008, Journal of Neuroscience Methods.

[102]  Michael X Cohen,et al.  Assessing transient cross-frequency coupling in EEG data , 2008, Journal of Neuroscience Methods.

[103]  J. O’Neill,et al.  Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus , 2008, The Journal of Neuroscience.

[104]  W. Pennya,et al.  Testing for nested oscillation , 2008 .

[105]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[106]  Marco Idiart,et al.  Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations. , 2007, Learning & memory.

[107]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[108]  Michael E Hasselmo,et al.  First-in-first-out item replacement in a model of short-term memory based on persistent spiking. , 2007, Cerebral cortex.

[109]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[110]  N. Busch,et al.  Gamma amplitudes are coupled to theta phase in human EEG during visual perception. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[111]  P. Mitra,et al.  Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task , 2007, Proceedings of the National Academy of Sciences.

[112]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[113]  D. C. Mccarthy,et al.  Hippocampal and neocortical gamma oscillations predict memory formation in humans. , 2006, Cerebral cortex.

[114]  Adam Johnson,et al.  Cognitive Neural Ensembles in CA 3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007 .

[115]  Bruce L McNaughton,et al.  Cannabinoids reveal importance of spike timing coordination in hippocampal function , 2006, Nature Neuroscience.

[116]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[117]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[118]  R. Oostenveld,et al.  Theta and Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory , 2006, The Journal of Neuroscience.

[119]  Andreas Schulze-Bonhage,et al.  Human neocortical oscillations exhibit theta phase differences between encoding and retrieval , 2006, NeuroImage.

[120]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[121]  G. Buzsáki,et al.  Temporal Encoding of Place Sequences by Hippocampal Cell Assemblies , 2006, Neuron.

[122]  Janina Ferbinteanu,et al.  Relative spike timing in pairs of hippocampal neurons distinguishes the beginning and end of journeys. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J E Lisman,et al.  Theta oscillations in human cortex during a working-memory task: evidence for local generators. , 2006, Journal of neurophysiology.

[124]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[125]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[126]  Horacio G Rotstein,et al.  Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[128]  W. Klimesch,et al.  Phase synchronization between theta and upper alpha oscillations in a working memory task. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[129]  Manuel Schabus,et al.  Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[130]  S. Hughes,et al.  Thalamic Mechanisms of EEG Alpha Rhythms and Their Pathological Implications , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[131]  Richard Kempter,et al.  Microsecond precision of phase delay in the auditory system of the barn owl. , 2005, Journal of neurophysiology.

[132]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[133]  Alfredo Fontanini,et al.  7 to 12 Hz activity in rat gustatory cortex reflects disengagement from a fluid self-administration task. , 2005, Journal of neurophysiology.

[134]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[135]  M. Wilson,et al.  Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm , 2005, Hippocampus.

[136]  J. Fell,et al.  Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task , 2005, Hippocampus.

[137]  B. McNaughton,et al.  Local Sensory Cues and Place Cell Directionality: Additional Evidence of Prospective Coding in the Hippocampus , 2004, The Journal of Neuroscience.

[138]  B. Jones Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. , 2004, Progress in brain research.

[139]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[140]  T. Seidenbecher,et al.  Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval , 2003, Science.

[141]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[142]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[143]  W. Freeman The wave packet: an action potential for the 21st century. , 2003, Journal of integrative neuroscience.

[144]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[145]  O. Jensen,et al.  Frontal theta activity in humans increases with memory load in a working memory task , 2002, The European journal of neuroscience.

[146]  Lucia Wittner,et al.  Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures , 2002, The Journal of physiology.

[147]  Bijan Pesaran,et al.  Temporal structure in neuronal activity during working memory in macaque parietal cortex , 2000, Nature Neuroscience.

[148]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[149]  Ole Jensen,et al.  Information Transfer Between Rhythmically Coupled Networks: Reading the Hippocampal Phase Code , 2001, Neural Computation.

[150]  M. D’Esposito,et al.  Medial Temporal Lobe Activity Associated with Active Maintenance of Novel Information , 2001, Neuron.

[151]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[152]  S. Raghavachari,et al.  Gating of Human Theta Oscillations by a Working Memory Task , 2001, The Journal of Neuroscience.

[153]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[154]  G. Laurent,et al.  Odor encoding as an active, dynamical process: experiments, computation, and theory. , 2001, Annual review of neuroscience.

[155]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[156]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[157]  C. Stern,et al.  Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli , 2001, Hippocampus.

[158]  A. von Stein,et al.  Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[159]  J. Lisman,et al.  Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. , 2000, Journal of neurophysiology.

[160]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[161]  T. Sejnowski,et al.  Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands , 2000, Hippocampus.

[162]  Tomoki Fukai,et al.  Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia-thalamo-cortical loops , 1999, Neural Networks.

[163]  O Jensen,et al.  An Oscillatory Short-Term Memory Buffer Model Can Account for Data on the Sternberg Task , 1998, The Journal of Neuroscience.

[164]  H. Petsche,et al.  Synchronization between prefrontal and posterior association cortex during human working memory. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[165]  J. O’Keefe,et al.  The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta , 1998, The European journal of neuroscience.

[166]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[167]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[168]  H. Eichenbaum,et al.  Memory Representation within the Parahippocampal Region , 1997, The Journal of Neuroscience.

[169]  G. Pfurtscheller,et al.  Foot and hand area mu rhythms. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[170]  Daphne N. Yu,et al.  High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. , 1997, Cerebral cortex.

[171]  R. Hari,et al.  Human cortical oscillations: a neuromagnetic view through the skull , 1997, Trends in Neurosciences.

[172]  B. McNaughton,et al.  Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model , 1998, Hippocampus.

[173]  H. Sompolinsky,et al.  Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory Activity , 1996, Science.

[174]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[175]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[176]  B. Connors,et al.  Two types of network oscillations in neocortex mediated by distinct glutamate receptor subtypes and neuronal populations. , 1996, Journal of neurophysiology.

[177]  A. Alonso,et al.  Differential Oscillatory Properties of Cholinergic and Non‐cholinergic Nucleus Basalis Neurons in Guinea Pig Brain Slice , 1996, The European journal of neuroscience.

[178]  B. McNaughton,et al.  Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences , 1996, Hippocampus.

[179]  J E Lisman,et al.  Storage of 7 +/- 2 short-term memories in oscillatory subcycles , 1995, Science.

[180]  S. Bressler Large-scale cortical networks and cognition , 1995, Brain Research Reviews.

[181]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[182]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[183]  M. Deschenes,et al.  Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. , 1993, Journal of neurophysiology.

[184]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[185]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[186]  E. Murray,et al.  Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations. , 1992, Behavioral neuroscience.

[187]  P. Goldman-Rakic,et al.  Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. , 1991, Journal of neurophysiology.

[188]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[189]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[190]  J. Winson Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. , 1978, Science.

[191]  F. D. da Silva,et al.  Organization of thalamic and cortical alpha rhythms: spectra and coherences. , 1973, Electroencephalography and clinical neurophysiology.

[192]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[193]  C. H. Vanderwolf,et al.  Hippocampal electrical activity and voluntary movement in the rat. , 1969, Electroencephalography and clinical neurophysiology.

[194]  P. Timiras,et al.  PREPYRIFORM ELECTRICAL ACTIVITY IN THE RAT DURING HIGH ALTITUDE EXPOSURE. , 1965, Electroencephalography and clinical neurophysiology.

[195]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[196]  M. Manosevitz,et al.  High-Speed Scanning in Human Memory , 2022 .