Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex

Sensory deprivation during a critical period reduces spine motility and disrupts receptive field structure of layer 2/3 neurons in rat barrel cortex. To determine the locus of plasticity, we used laser scanning photostimulation, allowing us to rapidly map intracortical synaptic connectivity in brain slices. Layer 2/3 neurons differed in their spatial distributions of presynaptic partners: neurons directly above barrels received, on average, significantly more layer 4 input than those above the septa separating barrels. Complementary connectivity was found in deprived cortex: neurons above septa were now strongly coupled to septal regions, while connectivity between barrel regions and layer 2/3 was reduced. These results reveal competitive interactions between barrel and septal circuits in the establishment of precise intracortical circuits.

[1]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Gould,et al.  Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys , 1990, The Journal of comparative neurology.

[3]  K. Svoboda,et al.  Experience Strengthening Transmission by Driving AMPA Receptors into Synapses , 2003, Science.

[4]  B. Connors,et al.  Sensory experience modifies the short-term dynamics of neocortical synapses , 1999, Nature.

[5]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[6]  F. Ebner,et al.  Laminar comparison of somatosensory cortical plasticity. , 1994, Science.

[7]  Kristina D. Micheva,et al.  Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry , 1996, The Journal of comparative neurology.

[8]  H. Killackey,et al.  Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons , 1991, The Journal of comparative neurology.

[9]  Bradley L. Schlaggar,et al.  Postsynaptic control of plasticity in developing somatosensory cortex , 1993, Nature.

[10]  Hisato Kondoh,et al.  21 – Development of the Eye , 2002 .

[11]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[12]  F. Rice Comparative Aspects of Barrel Structure and Development , 1995 .

[13]  Ehud Ahissar,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2000, Nature.

[14]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[15]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[16]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[17]  Asaf Keller,et al.  Functional independence of layer IV barrels. , 2002, Journal of neurophysiology.

[18]  B. Roerig,et al.  Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. , 2002, Cerebral cortex.

[19]  K. Fox,et al.  A critical period for experience-dependent synaptic plasticity in rat barrel cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[21]  S. Jhaveri,et al.  Barrel construction in rodent neocortex: role of thalamic afferents versus extracellular matrix molecules. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[23]  J. Chapin,et al.  Corticocortical connections within the primary somatosensory cortex of the rat , 1987, The Journal of comparative neurology.

[24]  H. Killackey,et al.  Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex , 1984, Brain Research.

[25]  W Zieglgänsberger,et al.  Precisely localized LTD in the neocortex revealed by infrared-guided laser stimulation. , 1999, Science.

[26]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[27]  Hermann Schmitt,et al.  Dynamic Representation , 1995, American Political Science Review.

[28]  J. Kaas,et al.  Intrathalamic connections: a new way to modulate cortical plasticity? , 1998, Nature Neuroscience.

[29]  Lawrence C. Katz,et al.  Scanning laser photostimulation: a new approach for analyzing brain circuits , 1994, Journal of Neuroscience Methods.

[30]  R Kötter,et al.  Analysing functional connectivity in brain slices by a combination of infrared video microscopy, flash photolysis of caged compounds and scanning methods , 1998, Neuroscience.

[31]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .

[32]  K. Svoboda,et al.  Rapid Development and Plasticity of Layer 2/3 Maps in Rat Barrel Cortex In Vivo , 2001, Neuron.

[33]  D. Jeanmonod,et al.  Mouse somatosensory cortex: Alterations in the barrelfield following receptor injury at different early postnatal ages , 1981, Neuroscience.

[34]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[35]  D. Feldman A New Critical Period for Sensory Map Plasticity , 2001, Neuron.

[36]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[37]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[38]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[39]  Edward M Callaway,et al.  Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex , 2000, Neuron.

[40]  M Canepari,et al.  Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters , 2001, Journal of Neuroscience Methods.

[41]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[42]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[43]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[44]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[45]  L A Krubitzer,et al.  The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets , 1992, The Journal of comparative neurology.

[46]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[47]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[48]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[49]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[50]  E. G. Jones,et al.  Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  F. Ebner,et al.  Barrels and septa: Separate circuits in rat barrel field cortex , 1999, The Journal of comparative neurology.

[52]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[53]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[54]  D. O'Leary,et al.  Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems , 1994, Current Opinion in Neurobiology.

[55]  T A Woolsey,et al.  Local intra‐ and interlaminar connections in mouse barrel cortex , 1990, The Journal of comparative neurology.

[56]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[57]  Verne S. Caviness,et al.  Somata of layer V projection neurons in the mouse barrelfield cortex are in preferential register with the sides and septa of the barrels , 1986, Neuroscience Letters.

[58]  H. van der Loos,et al.  Development of the barrels and barrel field in the somatosensory cortex of the mouse , 1977, The Journal of comparative neurology.

[59]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[60]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[61]  A. Keller,et al.  Thalamic-Evoked Synaptic Interactions in Barrel Cortex Revealed by Optical Imaging , 2000, The Journal of Neuroscience.

[62]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[63]  J. Trachtenberg,et al.  Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. , 2000, Science.

[64]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.