A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems

In this paper, we discuss and investigate the impulsive synchronization of fractional-order discrete-time chaotic systems. The proposed method is based on the impulsive synchronization theory used in the integer-order case on the one hand and the mathematical analysis of the fractional-order discrete-time systems on the other hand. Sufficient conditions for the stability of synchronization error system are given, and application example with numerical simulations is illustrated in order to verify that the proposed method is applicable and effective. Furthermore, in order to validate the proposed synchronization approach, we have also provided the experimental implementation results using Arduino Mega boards.

[1]  Zhang Hui,et al.  A novel adaptive-impulsive synchronization of fractional-order chaotic systems , 2015 .

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  M. Bettayeb,et al.  Secure data transmission scheme based on fractional-order discrete chaotic system , 2015, 2015 3rd International Conference on Control, Engineering & Information Technology (CEIT).

[4]  Donglian Qi,et al.  Synchronization for fractional order chaotic systems with uncertain parameters , 2016 .

[5]  Sundarapandian Vaidyanathan,et al.  HYBRID SYNCHRONIZATION OF LIU AND LÜ CHAOTIC SYSTEMS VIA ADAPTIVE CONTROL , 2011 .

[6]  Malek Ghanes,et al.  Structural Properties of Linear Discrete-Time Fractional-Order Systems , 2008 .

[7]  Malek Ghanes,et al.  Hybrid dynamical systems for private digital communication , 2013, Int. J. Model. Identif. Control..

[8]  Junzhi Yu,et al.  Dynamic analysis of a fractional-order Lorenz chaotic system , 2009 .

[9]  Remzi Tuntas,et al.  A new intelligent hardware implementation based on field programmable gate array for chaotic systems , 2015, Appl. Soft Comput..

[10]  P. Eloe,et al.  Linear systems of fractional nabla difference equations , 2011 .

[11]  Ewa Pawluszewicz,et al.  Local controllability of nonlinear discrete-time fractional order systems , 2013 .

[12]  Liu Jin-Gui,et al.  A novel study on the impulsive synchronization of fractional-order chaotic systems , 2013 .

[13]  Maamar Bettayeb,et al.  Controllability and Observability of Linear Discrete-Time Fractional-Order Systems , 2008, Int. J. Appl. Math. Comput. Sci..

[14]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Yong Feng,et al.  Chaos synchronization based on sliding mode observer , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[16]  Antonio Loría,et al.  Adaptive Observers With Persistency of Excitation for Synchronization of Chaotic Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Abdurahman Kadir,et al.  Color image encryption scheme using coupled hyper chaotic system with multiple impulse injections , 2017 .

[18]  Darong Lai,et al.  Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes , 2012 .

[19]  Tsung-Lieh Hsien,et al.  Exponential stability of discrete time uncertain systems with time-varying delay , 1995 .

[20]  Liu Zeng-rong,et al.  Impulsive Control for the Stabilization of Discrete Chaotic System , 2002 .

[21]  Liu Zeng-rong,et al.  Impulsive synchronization of discrete chaotic systems , 2003 .

[22]  Dorota Mozyrska,et al.  Multiparameter Fractional Difference Linear Control Systems , 2014 .

[23]  Mourad Laghrouche,et al.  Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board , 2015 .

[24]  M. Bettayeb,et al.  A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems , 2017 .

[25]  R. Tuntas The modelling and analysis of nonlinear systems using a new expert system approach , 2014 .

[26]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[27]  Ana Dalia Pano-Azucena,et al.  Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators , 2016, Nonlinear Dynamics.

[28]  Ximei Liu,et al.  New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems , 2014, Nonlinear Dynamics.

[29]  Saïd Djennoune,et al.  A new implementation of an impulsive synchronisation of two discrete-time hyperchaotic systems using Arduino-Uno boards , 2017, Int. J. Model. Identif. Control..

[30]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[31]  D. Sierociuk,et al.  Stability of Discrete Fractional Order State-space Systems , 2008 .

[32]  Xiaozhong Liao,et al.  Synchronization control of fractional-order discrete-time chaotic systems , 2013, 2013 European Control Conference (ECC).

[33]  Xin Wang,et al.  Delayed impulsive synchronization of discrete-time complex networks with distributed delays , 2015 .

[34]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[35]  P. Balasubramaniam,et al.  Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem , 2017 .

[36]  Malek Ghanes,et al.  Passive and impulsive synchronization of a new four-dimensional chaotic system , 2011 .

[37]  Moez Feki,et al.  Secure digital communication using discrete-time chaos synchronization , 2003 .

[38]  Ronnie Mainieri,et al.  Projective Synchronization In Three-Dimensional Chaotic Systems , 1999 .

[39]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[40]  Mohamed Darouach,et al.  Observer-based approach for fractional-order chaotic synchronization and communication , 2013, 2013 European Control Conference (ECC).

[41]  Leon O. Chua,et al.  EXPERIMENTAL CHAOS SYNCHRONIZATION IN CHUA'S CIRCUIT , 1992 .

[42]  Horacio J. Marquez,et al.  Uniform Stability of Discrete Delay Systems and Synchronization of Discrete Delay Dynamical Networks via Razumikhin Technique , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[43]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[44]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[45]  Malek Ghanes,et al.  Chaotic synchronisation and secure communication via sliding-mode and impulsive observers , 2013, Int. J. Model. Identif. Control..

[46]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[47]  Xingyuan Wang,et al.  Chaos in the fractional-order complex Lorenz system and its synchronization , 2013 .

[48]  余淼,et al.  Modified impulsive synchronization of fractional order hyperchaotic systems , 2011 .

[49]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[50]  T. Hu Discrete Chaos in Fractional Henon Map , 2014 .

[51]  Yong Liu,et al.  Chaotic synchronization between linearly coupled discrete fractional Hénon maps , 2016 .

[52]  M. Ghanes,et al.  A novel transmission scheme based on impulsive synchronization of two Colpitts chaotic systems , 2013, 3rd International Conference on Systems and Control.

[53]  Zhoujin Cui,et al.  Dynamical Behaviors and Chaos in a New Fractional-order Financial System , 2012, 2012 Fifth International Workshop on Chaos-fractals Theories and Applications.

[54]  Zidong Wang,et al.  Pinning control of fractional-order weighted complex networks. , 2009, Chaos.