Ten simple rules to create biological network figures for communication

Biological network figures are ubiquitous in the biology and medical literature. On the one hand, a good network figure can quickly provide information about the nature and degree of interactions between items and enable inferences about the reason for those interactions. On the other hand, good network figures are difficult to create. In this paper, we outline 10 simple rules for creating biological network figures for communication, from choosing layouts, to applying color or other channels to show attributes, to the use of layering and separation. These rules are accompanied by illustrative examples. We also provide a concise set of references and additional resources for each rule.

[1]  Claudia C. Preston,et al.  NUP155 insufficiency recalibrates a pluripotent transcriptome with network remodeling of a cardiogenic signaling module , 2018, BMC Systems Biology.

[2]  G. Elisabeta Marai,et al.  Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[3]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[4]  M. Luckiesh,et al.  On 'retiring' and 'advancing' colors. , 1918 .

[5]  Jean-Daniel Fekete,et al.  Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.

[6]  Philip E. Bourne,et al.  Ten Simple Rules for Better Figures , 2014, PLoS Comput. Biol..

[7]  Christophe Hurter,et al.  Data-Driven Storytelling , 2017 .

[8]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[9]  J. Bennett Vision and Art: The Biology of Seeing , 2003 .

[10]  John H. Morris,et al.  Computational Tools for the Interactive Exploration of Proteomic and Structural Data* , 2010, Molecular & Cellular Proteomics.

[11]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[12]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[13]  Colin Ware,et al.  Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.

[14]  Diane Rasmussen Neal,et al.  Atlas of Science: Visualizing What We Know , 2011, J. Assoc. Inf. Sci. Technol..

[15]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[16]  Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD , 2018, Scientific reports.

[17]  Jarke J. van Wijk,et al.  Cushion Treemaps: Visualization of Hierarchical Information , 1999, INFOVIS.

[18]  G. Elisabeta Marai,et al.  MOSBIE: a tool for comparison and analysis of rule-based biochemical models , 2014, BMC Bioinformatics.

[19]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[20]  M. Hauser,et al.  Differential Expression of Coding and Long Noncoding RNAs in Keratoconus-Affected Corneas , 2018, bioRxiv.

[21]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[22]  Katja Bühler,et al.  Predicting functional neuroanatomical maps from fusing brain networks with genetic information , 2016, NeuroImage.

[23]  Tamara Munzner,et al.  Visualization analysis & design , 2015 .

[24]  Maureen C. Stone,et al.  A field guide to digital color , 2003 .

[25]  Güleda Düzyol Atlas of Science, Visualizing What We Know , 2010 .

[26]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[27]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[28]  Christopher J. Lortie,et al.  Ten simple rules for short and swift presentations , 2017, PLoS Comput. Biol..

[29]  Ross Maciejewski,et al.  The Perception of Graph Properties in Graph Layouts , 2018, Comput. Graph. Forum.

[30]  K. Brner Atlas of Science: Visualizing What We Know , 2010 .

[31]  Margaret S. Livingstone,et al.  Vision and Art: The Biology of Seeing , 2002 .

[32]  M. Wistrand,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009 .

[33]  Nils Gehlenborg,et al.  Visualization of Biological Data - Crossroads (Dagstuhl Seminar 18161) , 2018, Dagstuhl Reports.

[34]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[35]  Keith Andrews,et al.  Information Slices: Visualising and Exploring Large Hierarchies using Cascading, Semi-Circular Discs , 1998 .

[36]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[37]  Hélène Kirchner,et al.  Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with PORGY. , 2019, Methods in molecular biology.