Ten simple rules to create biological network figures for communication
暂无分享,去创建一个
Alexander Lex | Katja Bühler | John H Morris | G Elisabeta Marai | G. E. Marai | Bruno Pinaud | G. Marai | K. Bühler | A. Lex | Bruno Pinaud | J. Morris | John H. Morris
[1] Claudia C. Preston,et al. NUP155 insufficiency recalibrates a pluripotent transcriptome with network remodeling of a cardiogenic signaling module , 2018, BMC Systems Biology.
[2] G. Elisabeta Marai,et al. Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations , 2019, IEEE Transactions on Visualization and Computer Graphics.
[3] Ben Shneiderman,et al. The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.
[4] M. Luckiesh,et al. On 'retiring' and 'advancing' colors. , 1918 .
[5] Jean-Daniel Fekete,et al. Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.
[6] Philip E. Bourne,et al. Ten Simple Rules for Better Figures , 2014, PLoS Comput. Biol..
[7] Christophe Hurter,et al. Data-Driven Storytelling , 2017 .
[8] J. B. Kruskal,et al. Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .
[9] J. Bennett. Vision and Art: The Biology of Seeing , 2003 .
[10] John H. Morris,et al. Computational Tools for the Interactive Exploration of Proteomic and Structural Data* , 2010, Molecular & Cellular Proteomics.
[11] Sean R. Collins,et al. Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.
[12] Steven J. M. Jones,et al. Circos: an information aesthetic for comparative genomics. , 2009, Genome research.
[13] Colin Ware,et al. Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.
[14] Diane Rasmussen Neal,et al. Atlas of Science: Visualizing What We Know , 2011, J. Assoc. Inf. Sci. Technol..
[15] Frank van Ham,et al. “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.
[16] Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD , 2018, Scientific reports.
[17] Jarke J. van Wijk,et al. Cushion Treemaps: Visualization of Hierarchical Information , 1999, INFOVIS.
[18] G. Elisabeta Marai,et al. MOSBIE: a tool for comparison and analysis of rule-based biochemical models , 2014, BMC Bioinformatics.
[19] Edward R. Tufte,et al. Envisioning Information , 1990 .
[20] M. Hauser,et al. Differential Expression of Coding and Long Noncoding RNAs in Keratoconus-Affected Corneas , 2018, bioRxiv.
[21] J. Stasko,et al. Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.
[22] Katja Bühler,et al. Predicting functional neuroanatomical maps from fusing brain networks with genetic information , 2016, NeuroImage.
[23] Tamara Munzner,et al. Visualization analysis & design , 2015 .
[24] Maureen C. Stone,et al. A field guide to digital color , 2003 .
[25] Güleda Düzyol. Atlas of Science, Visualizing What We Know , 2010 .
[26] Allan R. Jones,et al. A mesoscale connectome of the mouse brain , 2014, Nature.
[27] Philippe Castagliola,et al. On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..
[28] Christopher J. Lortie,et al. Ten simple rules for short and swift presentations , 2017, PLoS Comput. Biol..
[29] Ross Maciejewski,et al. The Perception of Graph Properties in Graph Layouts , 2018, Comput. Graph. Forum.
[30] K. Brner. Atlas of Science: Visualizing What We Know , 2010 .
[31] Margaret S. Livingstone,et al. Vision and Art: The Biology of Seeing , 2002 .
[32] M. Wistrand,et al. Proteome Organization in a Genome-Reduced Bacterium , 2009 .
[33] Nils Gehlenborg,et al. Visualization of Biological Data - Crossroads (Dagstuhl Seminar 18161) , 2018, Dagstuhl Reports.
[34] Matthew A. Hibbs,et al. Visualization of omics data for systems biology , 2010, Nature Methods.
[35] Keith Andrews,et al. Information Slices: Visualising and Exploring Large Hierarchies using Cascading, Semi-Circular Discs , 1998 .
[36] Ben Shneiderman,et al. Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.
[37] Hélène Kirchner,et al. Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with PORGY. , 2019, Methods in molecular biology.