The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough

[1]  A. Spormann,et al.  Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction , 1988, Archives of Microbiology.

[2]  R. Thauer,et al.  Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources , 1978, Archives of Microbiology.

[3]  B. Buchanan,et al.  A reverse KREBS cycle in photosynthesis: consensus at last , 2004, Photosynthesis Research.

[4]  T. Hansen Metabolism of sulfate-reducing prokaryotes , 2004, Antonie van Leeuwenhoek.

[5]  J. Heidelberg,et al.  Gene Expression Analysis of Energy Metabolism Mutants of Desulfovibrio vulgaris Hildenborough Indicates an Important Role for Alcohol Dehydrogenase , 2003, Journal of bacteriology.

[6]  E. A. Greene,et al.  Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. , 2003, Environmental microbiology.

[7]  W. Hamilton,et al.  Microbially Influenced Corrosion as a Model System for the Study of Metal Microbe Interactions: A Unifying Electron Transfer Hypothesis , 2003, Biofouling.

[8]  D. Schriemer,et al.  Function of Oxygen Resistance Proteins in the Anaerobic, Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough , 2003, Journal of bacteriology.

[9]  Christopher L. Hemme,et al.  Genes and Genetic Manipulations of Desulfovibrio , 2003 .

[10]  L. Barton,et al.  Biochemistry and Physiology of Anaerobic Bacteria , 2003, Springer New York.

[11]  O. White,et al.  Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis , 2002, Nature Biotechnology.

[12]  G. Voordouw Carbon Monoxide Cycling by Desulfovibrio vulgaris Hildenborough , 2002, Journal of bacteriology.

[13]  J. Wall,et al.  Uranium Reduction by Desulfovibrio desulfuricans Strain G20 and a Cytochrome c3 Mutant , 2002, Applied and Environmental Microbiology.

[14]  Alan Collmer,et al.  Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  C. Gomes,et al.  The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain , 2001, FEBS letters.

[16]  N. Shenvi,et al.  Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris: a Novel Oxidative Stress Protection System , 2001 .

[17]  M. Bruschi,et al.  Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria , 2001, Applied Microbiology and Biotechnology.

[18]  Fan Yang,et al.  TIGRFAMs: a protein family resource for the functional identification of proteins , 2001, Nucleic Acids Res..

[19]  G. Voordouw,et al.  Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment , 2000, Archives of Microbiology.

[20]  J. Sanders-Loehr,et al.  A hemerythrin-like domain in a bacterial chemotaxis protein. , 2000, Biochemistry.

[21]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.

[22]  M. Bruschi,et al.  A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria. , 2000, Biochimica et biophysica acta.

[23]  H. Cypionka,et al.  Oxygen respiration by desulfovibrio species. , 2000, Annual review of microbiology.

[24]  S. Salzberg,et al.  Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. , 1999, Genomics.

[25]  M. Adams,et al.  Anaerobic microbes: oxygen detoxification without superoxide dismutase. , 1999, Science.

[26]  R. Hedderich,et al.  Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. , 1999, European journal of biochemistry.

[27]  M. Teixeira,et al.  Purification and Characterization of an Iron Superoxide Dismutase and a Catalase from the Sulfate-Reducing Bacterium Desulfovibrio gigas , 1999 .

[28]  M. Teixeira,et al.  Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp , 1998, JBIC Journal of Biological Inorganic Chemistry.

[29]  M. Bruschi,et al.  Characterization of the cytochromes C from Desulfovibrio desulfuricans G201. , 1998, Biochemical and biophysical research communications.

[30]  L. Pieulle,et al.  Isolation and analysis of the gene encoding the pyruvate-ferredoxin oxidoreductase of Desulfovibrio africanus, production of the recombinant enzyme in Escherichia coli, and effect of carboxy-terminal deletions on its stability , 1997, Journal of bacteriology.

[31]  H. Santos,et al.  Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions , 1997, Journal of bacteriology.

[32]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[33]  Manuel G. Claros,et al.  TopPred II: an improved software for membrane protein structure predictions , 1994, Comput. Appl. Biosci..

[34]  H. Santos,et al.  Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas. , 1993, Biochemical and biophysical research communications.

[35]  M. W. Reij,et al.  The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex , 1993, Journal of bacteriology.

[36]  J. Odom,et al.  The Sulfate-Reducing Bacteria: Contemporary Perspectives , 1993, Brock/Springer Series in Contemporary Bioscience.

[37]  R. Kerby,et al.  Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system , 1992, Journal of bacteriology.

[38]  F. Widdel,et al.  Gram-Negative Mesophilic Sulfate-Reducing Bacteria , 1992 .

[39]  G. Macfarlane,et al.  Sulphate-reducing bacteria , 1991 .

[40]  D. Westlake,et al.  Distribution of Hydrogenase Genes in Desulfovibrio spp. and Their Use in Identification of Species from the Oil Field Environment , 1990, Applied and environmental microbiology.

[41]  K. Leung,et al.  Molecular analysis of lcrGVH, the V antigen operon of Yersinia pestis , 1989, Journal of bacteriology.

[42]  H. D. Peck,et al.  The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). , 1986, Biochemical and biophysical research communications.

[43]  H. Kent,et al.  DNA from diazotrophic Desulfovibrio strains is homologous to Klebsiella pneumoniae structural nif DNA and can be chromosomal or plasmid-borne , 1986 .

[44]  S. Brenner,et al.  Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). , 1985, European journal of biochemistry.

[45]  B. Currell Sulfur. Its significance for chemistry, for the geo-, bio- and cosmosphere and technology: Edited by A. Müller and B. Krebs. Pp. xiv + 512. Elsevier, Amsterdam and New York. 1984. $111.50 (Dfl. 290.00) , 1985 .

[46]  A. Müller,et al.  Sulfur : its significance for chemistry, for the geo-, bio-, and cosmosphere and technology , 1984 .

[47]  H. G. Trüper Microorganisms and the Sulfur Cycle , 1984 .

[48]  J. M. Odom,et al.  Hydrogen cycling as a general mechanism for energy coupling in the sulfate‐reducing bacteria, Desulfovibrio sp. , 1981 .

[49]  G. Gottschalk,et al.  Presence and stereospecificity of citrate synthase in anaerobic bacteria. , 1967, Biochemistry.

[50]  M. Philippart,et al.  Isolation and characterization of the main splenic glycolipids in Gaucer's disease: Evidence for the site of metabolic block , 1964 .