Lifting mathematical programs with complementarity constraints

We present a new smoothing approach for mathematical programs with complementarity constraints, based on the orthogonal projection of a smooth manifold. We study regularity of the lifted feasible set and, since the corresponding optimality conditions are inherently degenerate, introduce a regularization approach involving a novel concept of tilting stability. A correspondence between the C-index in the original problem and the quadratic index in the lifted problem is shown. In particular, a local minimizer of the mathematical program with complementarity constraints may numerically be found by minimization of the lifted, smooth problem. We report preliminary computational experience with the lifting approach.

[1]  Hubertus Th. Jongen,et al.  Optimization theory , 2004 .

[2]  Mihai Anitescu,et al.  On Using the Elastic Mode in Nonlinear Programming Approaches to Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[3]  Daniel Ralph,et al.  QPECgen, a MATLAB Generator for Mathematical Programs with Quadratic Objectives and Affine Variational Inequality Constraints , 1999, Comput. Optim. Appl..

[4]  Jong-Shi Pang,et al.  Piecewise Sequential Quadratic Programming for Mathematical Programs with Nonlinear Complementarity Constraints , 1998 .

[5]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[6]  Michel Théra,et al.  Ill-posed Variational Problems and Regularization Techniques , 1999 .

[7]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[8]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[9]  Masao Fukushima,et al.  An Implementable Active-Set Algorithm for Computing a B-Stationary Point of a Mathematical Program with Linear Complementarity Constraints , 2002, SIAM J. Optim..

[10]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[11]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[12]  Robert J. Vanderbei,et al.  Interior-Point Algorithms, Penalty Methods and Equilibrium Problems , 2006, Comput. Optim. Appl..

[13]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[14]  Christian Kanzow,et al.  A QP-free constrained Newton-type method for variational inequality problems , 1999, Math. Program..

[15]  M. Friedlander,et al.  An interior-point method for mpecs based on strictly feasible relaxations , 2004 .

[16]  Gui-Hua Lin,et al.  Hybrid Approach with Active Set Identification for Mathematical Programs with Complementarity Constraints , 2003 .

[17]  Jianzhong Zhang,et al.  A New Extreme Point Algorithm and Its Application in PSQP Algorithms for Solving Mathematical Programs with Linear Complementarity Constraints , 2001, J. Glob. Optim..

[18]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[19]  Georgia Perakis,et al.  A Robust SQP Method for Mathematical Programs with Linear Complementarity Constraints , 2006, Comput. Optim. Appl..

[20]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[21]  Hubertus Th. Jongen,et al.  MPCC: Critical Point Theory , 2009, SIAM J. Optim..

[22]  Diane Valérie Ouellette Schur complements and statistics , 1981 .

[23]  Stephen J. Wright,et al.  Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties , 2007, Math. Program..

[24]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Local Convergence , 2005, SIAM J. Optim..

[25]  Lorenz T. Biegler,et al.  Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence , 2005, SIAM J. Optim..

[26]  Daniel Ralph,et al.  Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs , 2007, Math. Program..

[27]  R. Tyrrell Rockafellar,et al.  Tilt Stability of a Local Minimum , 1998, SIAM J. Optim..

[28]  X. Q. Yang,et al.  A Sequential Smooth Penalization Approach to Mathematical Programs with Complementarity Constraints , 2006 .

[29]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[30]  J. Pang,et al.  Convergence of a Smoothing Continuation Method for Mathematical Progams with Complementarity Constraints , 1999 .

[31]  Hubertus Th. Jongen,et al.  On Stability of the Feasible Set of a Mathematical Problem with Complementarity Problems , 2009, SIAM J. Optim..

[32]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[33]  Daniel Ralph,et al.  Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints , 2003, Comput. Optim. Appl..

[34]  Michael P. Friedlander,et al.  A two-sided relaxation scheme for Mathematical Programs with Equilibrium Constraints , 2005, SIAM J. Optim..

[35]  Gemayqzel Bouza Allende,et al.  Mathematical programs with equilibrium constraints: solution techniques from parametric optimization , 2006 .

[36]  Hubertus Th. Jongen,et al.  Critical sets in parametric optimization , 1986, Math. Program..

[37]  Jan-J. Rückmann,et al.  On inertia and schur complement in optimization , 1987 .