Epigraph projections for fast general convex programming

This paper develops an approach for efficiently solving general convex optimization problems specified as disciplined convex programs (DCP), a common general-purpose modeling framework. Specifically we develop an algorithm based upon fast epigraph projections, projections onto the epigraph of a convex function, an approach closely linked to proximal operator methods. We show that by using these operators, we can solve any disciplined convex program without transforming the problem to a standard cone form, as is done by current DCP libraries. We then develop a large library of efficient epigraph projection operators, mirroring and extending work on fast proximal algorithms, for many common convex functions. Finally, we evaluate the performance of the algorithm, and show it often achieves order of magnitude speedups over existing general-purpose optimization solvers.

[1]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[2]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[3]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[4]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[6]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[7]  Pradeep Ravikumar,et al.  QUIC: quadratic approximation for sparse inverse covariance estimation , 2014, J. Mach. Learn. Res..

[8]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[9]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[12]  Nelly Pustelnik,et al.  Epigraphical Projection and Proximal Tools for Solving Constrained Convex Optimization Problems: Part I , 2012, ArXiv.

[13]  Alexander J. Smola,et al.  Second Order Cone Programming Approaches for Handling Missing and Uncertain Data , 2006, J. Mach. Learn. Res..

[14]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[15]  Stephen P. Boyd,et al.  Disciplined Convex Programming , 2006 .

[16]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[17]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[18]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[19]  Stephen P. Boyd,et al.  ECOS: An SOCP solver for embedded systems , 2013, 2013 European Control Conference (ECC).

[20]  Stephen P. Boyd,et al.  A Primer on Monotone Operator Methods , 2015 .

[21]  Arjan Kuijper,et al.  Scale Space and Variational Methods in Computer Vision , 2013, Lecture Notes in Computer Science.

[22]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..

[25]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[26]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[27]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[28]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[29]  Pradeep Ravikumar,et al.  Sparse inverse covariance matrix estimation using quadratic approximation , 2011, MLSLP.

[30]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[31]  A. Enis Cetin,et al.  Deconvolution using projections onto the epigraph set of a convex cost function , 2014, 2014 22nd Signal Processing and Communications Applications Conference (SIU).

[32]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[33]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[34]  Michael I. Jordan,et al.  A Robust Minimax Approach to Classification , 2003, J. Mach. Learn. Res..

[35]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[36]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.