Martensen splines and finite-part integrals

We state a uniform convergence theorem for finite-part integrals which are derivatives of weighted Cauchy principal value integrals. We prove that a sequence of Martensen splines, based on locally uniform meshes, satisfies the sufficient conditions required by the theorem. We construct the quadrature rules based on such splines and illustrate their behaviour by presenting some numerical results and comparisons with composite midpoint, Simpson and Newton-Cotes rules.

[1]  Erich Martensen Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen , 1973 .

[2]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[3]  P. Rabinowitz Uniform convergence results for Cauchy principal value integrals , 1991 .

[4]  Optimal local spline interpolants , 1987 .

[5]  Giovanni Monegato,et al.  Definitions, properties and applications of finite-part integrals , 2009 .

[6]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[7]  Charles W. Groetsch,et al.  Regularized Product Integration for Hadamard Finite Part Integrals , 1995 .

[8]  Vittoria Demichelis,et al.  Finite-Part Integrals and Modified Splines , 2004 .

[9]  Xiaoping Zhang,et al.  The superconvergence of the composite midpoint rule for the finite-part integral , 2010, J. Comput. Appl. Math..

[10]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[11]  Ralf Siewer Nodal splines on compact intervals , 2013 .

[12]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[13]  Vittoria Demichelis,et al.  Smoothness and error bounds of Martensen splines , 2015, J. Comput. Appl. Math..

[14]  Weiwei Sun,et al.  The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.

[15]  J. M. De Villiers A convergence result in nodal spline interpolation , 1993 .

[16]  Dehao Yu,et al.  Superconvergence of the composite Simpson's rule for a certain finite-part integral and its applications , 2009 .

[17]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .