A precision- and range-independent tool for testing floating-point arithmetric I: basic operations, square root, and remainder
暂无分享,去创建一个
[1] David H. Bailey,et al. A Fortran 90-based multiprecision system , 1995, TOMS.
[2] B. Verdonk,et al. Underflow revisited , 2002 .
[3] Steven M. German. Introduction to the Special Issue on Verification of Arithmetic Hardware , 1999, Formal Methods Syst. Des..
[4] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[5] David H. Bailey,et al. Floating Point Arithmetic in Future Supercomputers , 1989, Int. J. High Perform. Comput. Appl..
[6] Annie A. M. Cuyt,et al. A precision- and range-independent tool for testing floating-point arithmetic II: conversions , 2001, TOMS.
[7] Richard P. Brent,et al. Recent technical reports , 1977, SIGA.
[8] Marius A. Cornea-Hasegan,et al. Proving the IEEE Correctness of Iterative Floating-Point Square Root , Divide , and Remainder Algorithms , 1998 .
[9] John Harrison,et al. Floating Point Verification in HOL Light: The Exponential Function , 1997, Formal Methods Syst. Des..
[10] VerschaerenDennis,et al. A precision- and range-independent tool for testing floating-point arithmetic II , 2001 .
[11] David M. Smith,et al. Algorithm 693: a FORTRAN package for floating-point multiple-precision arithmetic , 1991, TOMS.
[12] David M. Russinoff. A Mechanically Checked Proof of IEEE Compliance of the Floating Point Multiplication, Division and Square Root Algorithms of the AMD-K7™ Processor , 1998, LMS J. Comput. Math..
[13] Karim Belabas,et al. User’s Guide to PARI / GP , 2000 .
[14] Stephen Lloyd Baluk Moshier,et al. Methods and programs for mathematical functions , 1989 .
[15] Jerome Toby Coonen. Contributions to a proposed standard for binary floating-point arithmetic (computer arithmetic) , 1984 .