Generalized Labeled Multi-Bernoulli Approximation of Multi-Object Densities

In multiobject inference, the multiobject probability density captures the uncertainty in the number and the states of the objects as well as the statistical dependence between the objects. Exact computation of the multiobject density is generally intractable and tractable implementations usually require statistical independence assumptions between objects. In this paper we propose a tractable multiobject density approximation that can capture statistical dependence between objects. In particular, we derive a tractable Generalized Labeled Multi-Bernoulli (GLMB) density that matches the cardinality distribution and the first moment of the labeled multiobject distribution of interest. It is also shown that the proposed approximation minimizes the Kullback-Leibler divergence over a special tractable class of GLMB densities. Based on the proposed GLMB approximation we further demonstrate a tractable multiobject tracking algorithm for generic measurement models. Simulation results for a multiobject Track-Before-Detect example using radar measurements in low signal-to-noise ratio (SNR) scenarios verify the applicability of the proposed approach.

[1]  A. Farina,et al.  Traffic intensity estimation via PHD filtering , 2008, 2008 European Radar Conference.

[2]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[3]  Hans Driessen,et al.  Multitarget Tracking With Multiscan Knowledge Exploitation Using Sequential MCMC Sampling , 2013, IEEE Journal of Selected Topics in Signal Processing.

[4]  Jeffrey G. Andrews,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[5]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Ba-Ngu Vo,et al.  Multi-target Track-Before-Detect using labeled random finite set , 2013, 2013 International Conference on Control, Automation and Information Sciences (ICCAIS).

[7]  L. Waller,et al.  Applied Spatial Statistics for Public Health Data: Waller/Applied Spatial Statistics , 2004 .

[8]  Vikram Krishnamurthy,et al.  Integrated Tracking, Classification, and Sensor Management , 2013 .

[9]  Murat Üney,et al.  Distributed Fusion of PHD Filters Via Exponential Mixture Densities , 2013, IEEE Journal of Selected Topics in Signal Processing.

[10]  J. N. Driessen,et al.  Particle filter based detection for tracking , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[12]  Xi Zhang,et al.  Adaptive Control and Reconfiguration of Mobile Wireless Sensor Networks for Dynamic Multi-Target Tracking , 2011, IEEE Transactions on Automatic Control.

[13]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[14]  K. Yao,et al.  INITIALIZATION OF MULTI-BERNOULLI RANDOM-FINITE-SETS OVER A SENSOR TREE , 2012 .

[15]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[16]  P. Diggle Applied Spatial Statistics for Public Health Data , 2005 .

[17]  Martin Haenggi,et al.  On distances in uniformly random networks , 2005, IEEE Transactions on Information Theory.

[18]  Ronald Mahler,et al.  An approximate CPHD filter for superpositional sensors , 2012, Defense + Commercial Sensing.

[19]  Jean-François Cardoso,et al.  Dependence, Correlation and Gaussianity in Independent Component Analysis , 2003, J. Mach. Learn. Res..

[20]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[21]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[22]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[23]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[24]  Giorgio Battistelli,et al.  Consensus CPHD Filter for Distributed Multitarget Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[25]  Mark Coates,et al.  Computationally-Tractable Approximate PHD and CPHD Filters for Superpositional Sensors , 2013, IEEE Journal of Selected Topics in Signal Processing.

[26]  Mats Rudemo,et al.  Automatic estimation of individual tree positions from aerial photos , 1997 .

[27]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[28]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[29]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[30]  B. Ripley,et al.  Markov Point Processes , 1977 .

[31]  François Baccelli,et al.  Stochastic geometry and architecture of communication networks , 1997, Telecommun. Syst..

[32]  D. J. Salmond,et al.  A particle filter for track-before-detect , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[33]  I. R. Goodman,et al.  Mathematics of Data Fusion , 1997 .

[34]  Samuel J. Davey,et al.  Track‐Before‐Detect Techniques , 2014 .

[35]  Ba-Ngu Vo,et al.  Towards large scale multi-target tracking , 2014, Defense + Security Symposium.

[36]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[37]  Adrian Baddeley,et al.  ICM for Object Recognition , 1992 .

[38]  R. Nevanlinna Models for Point Processes Observed with Noise , 1998 .

[39]  Peter Willett,et al.  GM-CPHD and MLPDA applied to the SEABAR07 and TNO-blind multi-static sonar data , 2009, 2009 12th International Conference on Information Fusion.

[40]  Klaus C. J. Dietmayer,et al.  Road user tracking at intersections using a multiple-model PHD filter , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[41]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[42]  CantoniAntonio,et al.  The cardinality balanced multi-target multi-Bernoulli filter and its implementations , 2009 .

[43]  Ba-Ngu Vo,et al.  Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering , 2013, IEEE Transactions on Signal Processing.

[44]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[45]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[46]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[47]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[48]  J. Symanzik Statistical Analysis of Spatial Point Patterns (2nd ed.) , 2005 .

[49]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[50]  BaccelliFrançois,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009 .

[51]  Joaquim Salvi,et al.  SLAM With Dynamic Targets via Single-Cluster PHD Filtering , 2013, IEEE Journal of Selected Topics in Signal Processing.

[52]  B. D. Brewster Geelen Accurate solution for the modified Bessel function of the first kind , 1995 .

[53]  Ba-Ngu Vo,et al.  SLAM Gets a PHD: New Concepts in Map Estimation , 2014, IEEE Robotics & Automation Magazine.

[54]  Melanie Bocquel,et al.  Fixed-Lag Smoothing for Bayes Optimal Knowledge Exploitation in Target Tracking , 2014, IEEE Transactions on Signal Processing.

[55]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[56]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[57]  Lennart Svensson,et al.  Performance evaluation of MHT and GM-CPHD in a ground target tracking scenario , 2009, 2009 12th International Conference on Information Fusion.

[58]  David Suter,et al.  Visual tracking of numerous targets via multi-Bernoulli filtering of image data , 2012, Pattern Recognit..

[59]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[60]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[61]  Ba-Ngu Vo,et al.  Bayesian Multi-Target Tracking With Merged Measurements Using Labelled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[62]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[63]  Robin J. Evans,et al.  A Particle Marginal Metropolis-Hastings Multi-Target Tracker , 2014, IEEE Transactions on Signal Processing.

[64]  Y. Bar-Shalom Tracking and data association , 1988 .

[65]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[66]  Fredrik Gustafsson,et al.  Road Intensity Based Mapping Using Radar Measurements With a Probability Hypothesis Density Filter , 2011, IEEE Transactions on Signal Processing.