Morphological deconvolutionMorphological deconvolution

[1]  Ali Gholami Semi-blind nonstationary deconvolution: Joint reflectivity and Q estimation , 2015 .

[2]  T. Ulrych,et al.  Analytic minimum entropy deconvolution , 1982 .

[3]  Mauricio D. Sacchi,et al.  Fast 3D Blind Seismic Deconvolution via Constrained Total Variation and GCV , 2013, SIAM J. Imaging Sci..

[4]  A. Gholami Residual statics estimation by sparsity maximization , 2013 .

[5]  A. Ziolkowski,et al.  A quantitative study on the use of converted waves for sub‐basalt imaging , 2003 .

[6]  Douglas W. Oldenburg,et al.  The deconvolution of phase‐shifted wavelets , 1982 .

[7]  Mirko van der Baan,et al.  Nonstationary phase estimation using regularized local kurtosis maximization , 2009 .

[9]  Douglas W. Oldenburg,et al.  Automatic phase correction of common-midpoint stacked data , 1987 .

[10]  Han‐joon Kim,et al.  Analytic minimum information deconvolution and its application to ocean bottom seismometer data , 1996 .

[11]  Mauricio D. Sacchi,et al.  A Fast and Automatic Sparse Deconvolution in the Presence of Outliers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Michael Behm,et al.  Blind deconvolution of multichannel recordings by linearized inversion in the spectral domain , 2014 .

[13]  Jinghuai Gao,et al.  Seismic sparse-spike deconvolution via Toeplitz-sparse matrix factorization , 2016 .

[14]  Christian Jutten,et al.  A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed $\ell ^{0}$ Norm , 2008, IEEE Transactions on Signal Processing.

[15]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[16]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[17]  João Marcos Travassos Romano,et al.  A fast algorithm for sparse multichannel blind deconvolution , 2016 .

[18]  Caroline Chaux,et al.  A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal , 2014, IEEE Transactions on Signal Processing.

[19]  Nonminimum phase deconvolution in the log domain: A sparse inversion approach , 2015 .

[20]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  Ali Gholami,et al.  Nonlinear multichannel impedance inversion by total-variation regularization , 2015 .

[23]  G. McMechan,et al.  Amplitude and phase versus angle for elastic wide-angle reflections in the τ‐p domain , 2015 .

[24]  J. Downton,et al.  Seismic parameter estimation from AVO inversion , 2005 .

[25]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[26]  Jean-Christophe Pesquet,et al.  Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed ${\ell _1}/{\ell _2}$ Regularization , 2014, IEEE Signal Processing Letters.

[27]  D. Colombo Benefits of wide-offset seismic for commercial exploration targets and implications for data analysis , 2005 .

[28]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[29]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[30]  A. Gholami,et al.  Regularization of geophysical ill-posed problems by iteratively re-weighted and refined least squares , 2016, Computational Geosciences.

[31]  D. Velis Stochastic sparse-spike deconvolution , 2008 .