Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA

[1]  Gaurav Sahay,et al.  Brief update on endocytosis of nanomedicines. , 2019, Advanced drug delivery reviews.

[2]  James E. Dahlman,et al.  Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses , 2019, Advanced materials.

[3]  D. Svergun,et al.  Investigation of charge ratio variation in mRNA - DEAE-dextran polyplex delivery systems. , 2019, Biomaterials.

[4]  Hao Zhu,et al.  Dendrimer‐Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I , 2018, Advanced materials.

[5]  H. Wood FDA approves patisiran to treat hereditary transthyretin amyloidosis , 2018, Nature Reviews Neurology.

[6]  Carmen J Gil,et al.  Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery. , 2018, ACS nano.

[7]  Örn Almarsson,et al.  A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. , 2018, Molecular therapy : the journal of the American Society of Gene Therapy.

[8]  Roy van der Meel,et al.  On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. , 2018, ACS nano.

[9]  Lennart Lindfors,et al.  Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles , 2018, Proceedings of the National Academy of Sciences.

[10]  Lyndon Emsley,et al.  Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. , 2018, The journal of physical chemistry. B.

[11]  Kevin Welsher,et al.  A Protocol for Real-time 3D Single Particle Tracking. , 2018, Journal of visualized experiments : JoVE.

[12]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[13]  Khalid A. Hajj,et al.  Tools for translation: non-viral materials for therapeutic mRNA delivery , 2017 .

[14]  Kevin Welsher,et al.  Robust real-time 3D single-particle tracking using a dynamically moving laser spot. , 2017, Optics letters.

[15]  Avinash K. Gadok,et al.  Phase-Separated Liposomes Enhance the Efficiency of Macromolecular Delivery to the Cellular Cytoplasm , 2017, Cellular and Molecular Bioengineering.

[16]  R. Zoncu,et al.  Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex , 2017, Science.

[17]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[18]  Alexandra Kroll,et al.  Classification and Segmentation of Nanoparticle Diffusion Trajectories in Cellular Micro Environments , 2017, PloS one.

[19]  G. Blobel,et al.  Clues to the mechanism of cholesterol transfer from the structure of NPC1 middle lumenal domain bound to NPC2 , 2016, Proceedings of the National Academy of Sciences.

[20]  G. Gao,et al.  Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection , 2016, Cell.

[21]  E. Ikonen,et al.  LDL–cholesterol transport to the endoplasmic reticulum: current concepts , 2016, Current opinion in lipidology.

[22]  David W. McComb,et al.  An Orthogonal Array Optimization of Lipid-like Nanoparticles for mRNA Delivery in Vivo. , 2015, Nano letters.

[23]  Daniel G. Anderson,et al.  Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. , 2015, Nano letters.

[24]  V. Torchilin,et al.  New Developments in Liposomal Drug Delivery. , 2015, Chemical reviews.

[25]  N. Ashwanikumar,et al.  5-Fluorouracil-lipid conjugate: potential candidate for drug delivery through encapsulation in hydrophobic polyester-based nanoparticles. , 2014, Acta biomaterialia.

[26]  S. Regen,et al.  The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. , 2014, Accounts of chemical research.

[27]  Özlem Türeci,et al.  mRNA-based therapeutics — developing a new class of drugs , 2014, Nature Reviews Drug Discovery.

[28]  William O. Hancock,et al.  Bidirectional cargo transport: moving beyond tug of war , 2014, Nature Reviews Molecular Cell Biology.

[29]  R. McElhaney,et al.  A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. , 2014, Biochimica et biophysica acta.

[30]  S. López,et al.  Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. , 2014, Biochimica et biophysica acta.

[31]  Marian E. Gindy,et al.  Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[32]  Sarah Seifert,et al.  Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape , 2013, Nature Biotechnology.

[33]  Robert Langer,et al.  Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling , 2013, Nature Biotechnology.

[34]  Hiroyasu Masunaga,et al.  The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. , 2013, Biochimica et biophysica acta.

[35]  Angelo Bifone,et al.  Transfection efficiency boost of cholesterol-containing lipoplexes. , 2012, Biochimica et biophysica acta.

[36]  D. Peter Tieleman,et al.  Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[37]  Juliane Nguyen,et al.  Nucleic acid delivery: the missing pieces of the puzzle? , 2012, Accounts of chemical research.

[38]  Shigeo Matsuda,et al.  Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo** , 2012, Angewandte Chemie.

[39]  C. Tripp,et al.  A comparison of the behavior of cholesterol, 7-dehydrocholesterol and ergosterol in phospholipid membranes. , 2012, Biochimica et biophysica acta.

[40]  W. März,et al.  Plant sterols and cardiovascular disease: a systematic review and meta-analysis† , 2012, European heart journal.

[41]  L. Goedeke,et al.  Regulation of cholesterol homeostasis , 2012, Cellular and Molecular Life Sciences.

[42]  Nes Wd Biosynthesis of cholesterol and other sterols. , 2011 .

[43]  W. Nes Biosynthesis of Cholesterol and Other Sterols , 2011, Chemical reviews.

[44]  J. Dye,et al.  Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 , 2011, Nature.

[45]  S. Funari,et al.  Plant pentacyclic triterpenic acids as modulators of lipid membrane physical properties. , 2011, Biochimica et biophysica acta.

[46]  P. Bradford,et al.  Modulation of signal transduction in cancer cells by phytosterols , 2010, BioFactors.

[47]  K. G. Rajeev,et al.  Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  R. Koynova,et al.  Cationic phospholipids: structure transfection activity relationships , 2009 .

[49]  K. Ewert,et al.  The role of cholesterol and structurally related molecules in enhancing transfection of cationic liposome-DNA complexes. , 2009, The journal of physical chemistry. B.

[50]  W. Balch,et al.  NPC1/NPC2 function as a tag team duo to mobilize cholesterol , 2008, Proceedings of the National Academy of Sciences.

[51]  E. Dufourc Sterols and membrane dynamics , 2008, Journal of chemical biology.

[52]  Euan McLeod,et al.  High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. , 2008, Optics letters.

[53]  H. Amenitsch,et al.  Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. , 2008, Biophysical journal.

[54]  J. Hanes,et al.  Characterization of the intracellular dynamics of a non-degradative pathway accessed by polymer nanoparticles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[55]  Ann M Stock,et al.  Structural Basis of Sterol Binding by NPC2, a Lysosomal Protein Deficient in Niemann-Pick Type C2 Disease* , 2007, Journal of Biological Chemistry.

[56]  R. Macdonald,et al.  Synergy in lipofection by cationic lipid mixtures: superior activity at the gel-liquid crystalline phase transition. , 2007, The journal of physical chemistry. B.

[57]  Zhi‐Wu Yu,et al.  Condensation effect of cholesterol, stigmasterol, and sitosterol on dipalmitoylphosphatidylcholine in molecular monolayers , 2007 .

[58]  T. V. van Berkel,et al.  Emerging roles of the intestine in control of cholesterol metabolism. , 2006, World journal of gastroenterology.

[59]  R. Macdonald,et al.  Cubic phases in phosphatidylcholine-cholesterol mixtures: cholesterol as membrane "fusogen". , 2006, Biophysical journal.

[60]  Roger Kurlan,et al.  Current Concepts , 2022 .

[61]  Daniel Harries,et al.  Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Slotte,et al.  Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization. , 2004, Biochimica et biophysica acta.

[63]  U. Greber,et al.  Cholesterol Is Required for Endocytosis and Endosomal Escape of Adenovirus Type 2 , 2004, Journal of Virology.

[64]  A. M. Popov Comparative Study of Effects of Various Sterols and Triterpenoids on Permeability of Model Lipid Membranes , 2003, Journal of Evolutionary Biochemistry and Physiology.

[65]  R. Winter,et al.  Differential Properties of the Sterols Cholesterol, Ergosterol, β-Sitosterol, trans-7-Dehydrocholesterol, Stigmasterol and Lanosterol on DPPC Bilayer Order , 2003 .

[66]  K. Edwards,et al.  Disc formation in cholesterol-free liposomes during phase transition. , 2003, Biochimica et biophysica acta.

[67]  R. Ostlund,et al.  Phytosterols in human nutrition. , 2003, Annual review of nutrition.

[68]  K. B. Hicks,et al.  Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. , 2002, Progress in lipid research.

[69]  T Salditt,et al.  An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. , 1998, Science.

[70]  K. Edwards,et al.  Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction. , 1995 .

[71]  H. Arai,et al.  Side-chain structure is critical for the transport of sterols from lysosomes to cytoplasm. , 1995, Biochimica et biophysica acta.

[72]  A. Bangham Review of Lasic, Liposomes: From Physics to Applications , 1994 .

[73]  J. Giner Biosynthesis of Marine Sterol Side Chains , 1993 .