Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-Band

The monitoring of soil freezing and thawing states over large areas is very challenging on ground. In order to investigate the potential and the limitations of space-borne SAR polarimetry at C-band for soil state survey, analyses were conducted on an entire winter time series of fully polarimetric RADARSAT-2 data from 2011/2012 to identify freezing as well as thawing states within the soil. The polarimetric data were acquired over the Sodankyla test site in Finland together with in situ measurements of the soil and the snow cover. The analyses indicate clearly that the dynamics of the polarimetric entropy and mean scattering alpha angle are directly correlated to soil freezing and thawing states, even under distinct dry snow cover. First modeling attempts using the Extended Bragg soil scattering model justify the observed trends, which indicate surface-like scattering during frozen soil conditions and multiple/volume scattering for thawed soils. Hence, these first investigations at C-band foster motivation to work towards a robust polarimetric detection of soil freezing and thawing states as well as their transition phase.

[1]  Huadong Guo,et al.  Permafrost mapping in the Tibet plateau using polarimetric SAR , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[2]  E. Rignot,et al.  Monitoring freeze—thaw cycles along North—South Alaskan transects using ERS-1 SAR , 1994 .

[3]  Keri C. Hornbuckle,et al.  Magnitude and origin of polychlorinated biphenyl (PCB) and dichlorodiphenyltrichloroethane (DDT) compounds resuspended in southern Lake Michigan , 2004 .

[4]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Jiancheng Shi,et al.  Monitoring of Environmental Conditions in Taiga Forests Using ERS-1 SAR Data: Results From the Commissioning Phase , 1993 .

[6]  Monique Bernier,et al.  An Approach for Mapping Frozen Soil of Agricultural Land under Snow Cover using RADARSAT-1 and RADARSAT-2 , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[7]  S. D. M. ller,et al.  Polarisation: Applications in Remote Sensing , 2010 .

[8]  Wolfgang Wagner,et al.  Probabilistic Fusion of $\hbox{K}_{\rm u}$ - and C-band Scatterometer Data for Determining the Freeze/Thaw State , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Thomas Jagdhuber,et al.  Soil parameter retrieval under vegetation cover using SAR polarimetry , 2012 .

[12]  Yoshio Yamaguchi,et al.  Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode , 2011 .

[13]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Takeo Tadono,et al.  Case studies of frozen ground monitoring using PALSAR/ALOS data , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Philippe Ciais,et al.  Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming , 2008 .

[16]  Harden,et al.  Sensitivity of boreal forest carbon balance to soil thaw , 1998, Science.

[17]  Jiancheng Shi,et al.  Monitoring of environmental conditions in Taiga forests using ERS-1 SAR , 1994 .

[18]  Fawwaz T. Ulaby,et al.  Dielectric properties of soils in the 0.3-1.3-GHz range , 1995, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Hagemann,et al.  Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle , 2008 .

[20]  Sang-Eun Park,et al.  ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions From Backscatter Data Using an Empirical Threshold-Analysis Algorithm , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Sergey A. Komarov,et al.  Freeze-thaw processes radar remote sensing modeling and image processing , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[22]  Irena Hajnsek,et al.  Multi-frequency Analysis of Snow-covered Areas using SAR Polarimetry , 2013 .

[23]  U. Wegmüller The effect of freezing and thawing on the microwave signatures of bare soil. , 1990 .

[24]  K. Zhao,et al.  The estimation of dielectric constant of frozen soil-water mixture at microwave bands , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[25]  M. Torre Jorgenson,et al.  Resilience and vulnerability of permafrost to climate change , 2010 .

[26]  Robert Leconte,et al.  Potentials of RADARSAT-2 data to monitor freezing/thawing cycles over agricultural lands in Canada , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[28]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[29]  Sassan Saatchi,et al.  Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002 , 2004 .