Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer

Quantum communication is a secure way to transfer quantum information and to communicate with legitimate parties over distant places in a network. Although communication over a long distance has already been attained, technical problem arises due to unavoidable loss of information through the transmission channel. Quantum repeaters can extend the distance scale using entanglement swapping and purification scheme. Here we demonstrate the working of a quantum repeater by the above two processes. We use IBM’s real quantum processor ‘ibmqx4’ to create two pair of entangled qubits and design an equivalent quantum circuit which consequently swaps the entanglement between the two pairs. We then develop a novel purification protocol which enhances the degree of entanglement in a noisy channel that includes combined errors of bit-flip, phase-flip and phase-change error. We perform quantum state tomography to verify the entanglement swapping between the two pairs of qubits and working of the purification protocol.

[1]  Ari Mizel,et al.  Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole , 2017 .

[2]  James R. Wootton Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment , 2016, 1609.07774.

[3]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[4]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[5]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[6]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[7]  Philipp Schindler,et al.  Deterministic entanglement swapping with an ion-trap quantum computer , 2008 .

[8]  H. Weinfurter,et al.  Free-Space distribution of entanglement and single photons over 144 km , 2006, quant-ph/0607182.

[9]  T. Schmitt-Manderbach Long distance free-space quantum key distribution , 2007 .

[10]  Kae Nemoto,et al.  Quantum communication without the necessity of quantum memories , 2012, Nature Photonics.

[11]  Bikash K. Behera,et al.  Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer , 2017, Quantum Information Processing.

[12]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[13]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[14]  C. G. Peterson,et al.  Long-distance decoy-state quantum key distribution in optical fiber. , 2006, Physical review letters.

[15]  B. Tang Conceptual novelty: the holy grail of scientific pursuit , 2017 .

[16]  Abhishek Shukla,et al.  Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state , 2017, Quantum Information Processing.

[17]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  S. Wimberger Applications of fidelity measures to complex quantum systems , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[21]  C. Elliott Building the quantum network* , 2002 .

[22]  Jacob M. Taylor,et al.  Quantum repeater with encoding , 2008, 0809.3629.

[23]  Chuan Wang,et al.  Recent development in quantum communication , 2012 .

[24]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[25]  Liang Jiang,et al.  Efficient long distance quantum communication , 2015, 1509.08435.

[26]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[27]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[28]  Lucas Lamata Manuel,et al.  Quantum Artificial Life in an IBM Quantum Computer , 2018 .

[29]  Norbert Lütkenhaus,et al.  Optimal architectures for long distance quantum communication , 2015, Scientific Reports.

[30]  Diego Garc'ia-Mart'in,et al.  Five Experimental Tests on the 5-Qubit IBM Quantum Computer , 2017, 1712.05642.

[31]  Adeline Orieux,et al.  Recent advances on integrated quantum communications , 2016, 1606.07346.

[32]  L. Ye,et al.  Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity , 2011, 1403.5041.

[33]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[34]  Sumeet Khatri,et al.  Robust quantum network architectures and topologies for entanglement distribution , 2017, 1709.07404.

[35]  Norbert Lütkenhaus,et al.  Ultrafast and Fault-Tolerant Quantum Communication over Long Distances , 2014 .

[36]  Bikash K. Behera,et al.  A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer , 2017 .

[37]  Jian-Wei Pan,et al.  Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. , 2005, Physical review letters.

[38]  C. Chou Towards a quantum network with atomic ensembles , 2006 .

[39]  Z. Gedik,et al.  Optimization and experimental realization of the quantum permutation algorithm , 2017, 1708.07900.

[40]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[41]  H. Weinfurter,et al.  Entanglement-based quantum communication over 144km , 2007 .

[42]  C. Trugenberger Probabilistic quantum memories. , 2000, Physical review letters.

[43]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[44]  A. Tomita,et al.  Entanglement Generation by Communication using Phase-Squeezed Light with Photon Loss , 2014, 1412.7921.

[45]  Bikash K. Behera,et al.  Automated error correction in IBM quantum computer and explicit generalization , 2017, Quantum Inf. Process..

[46]  Anirban Pathak,et al.  Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer , 2017 .

[47]  Sebastian Deffner,et al.  Demonstration of entanglement assisted invariance on IBM's quantum experience , 2016, Heliyon.

[48]  Jian-Wei Pan,et al.  Fault-tolerant quantum repeater with atomic ensembles and linear optics , 2006, quant-ph/0609151.

[49]  Goutam Paul,et al.  Experimental test of Hardy's paradox on a five-qubit quantum computer , 2017 .

[50]  Bei Zeng,et al.  Quantum State Tomography via Reduced Density Matrices. , 2016, Physical review letters.

[51]  A. Zeilinger,et al.  Long-Distance Free-Space Distribution of Quantum Entanglement , 2003, Science.

[52]  Jian-Wei Pan,et al.  Robust long-distance quantum communication with atomic ensembles and linear optics , 2006 .

[53]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[54]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[55]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[56]  郭光灿,et al.  量子存储(Quantum memory) , 2002 .

[57]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[58]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[59]  Christoph Simon,et al.  Robust and efficient quantum repeaters with atomic ensembles and linear optics , 2008, 0802.1475.

[60]  W. Munro,et al.  From quantum multiplexing to high-performance quantum networking , 2010 .

[61]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[62]  Philip Walther,et al.  Distributing entanglement and single photons through an intra-city, free-space quantum channel , 2005 .

[63]  A. Fowler,et al.  Surface code quantum communication. , 2009, Physical review letters.

[64]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[65]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[66]  Shou Zhang,et al.  Linear optical generation of multipartite entanglement with conventional photon detectors , 2009 .

[67]  Bikash K. Behera,et al.  Experimental realization of quantum cheque using a five-qubit quantum computer , 2017, Quantum Information Processing.

[68]  P. Panigrahi,et al.  Non-destructive discrimination of Bell states by NMR using a single ancilla qubit , 2010 .

[69]  Jian-Wei Pan,et al.  Robust creation of entanglement between remote memory qubits. , 2006, Physical review letters.

[70]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[71]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[72]  B. K. Behera,et al.  Experimental Demonstration of Quantum Tunneling in IBM Quantum Computer , 2017, 1712.07326.

[73]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[74]  S. Wehner,et al.  Entropic uncertainty and measurement reversibility , 2015, 1511.00267.

[75]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[76]  С.И. Доронин,et al.  РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ НА КВАНТОВОМ ПРОЦЕССОРЕ IBM QUANTUM EXPERIENCE , 2020 .

[77]  Nan Li,et al.  Experimental Free-Space Distribution of Entangled Photon Pairs over a Noisy Ground Atmosphere of 13km , 2004 .

[78]  Jian-Wei Pan,et al.  Experimental long-distance decoy-state quantum key distribution based on polarization encoding. , 2006, Physical review letters.

[79]  Ayan Majumder,et al.  Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud , 2017 .