LISTERIA MONOCYTOGENES ON DAIRY FARMS

[1]  I. Borovok,et al.  Active Lysogeny in Listeria Monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment , 2020, Cell reports.

[2]  M. Desvaux,et al.  Molecular Determinants of Surface Colonisation in Diarrhoeagenic Escherichia coli (DEC): from Bacterial Adhesion to Biofilm Formation. , 2020, FEMS microbiology reviews.

[3]  S. Kathariou,et al.  Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram‐positive bacteria , 2020, Molecular microbiology.

[4]  A. Roberts,et al.  The Transposon Registry , 2019, Mobile DNA.

[5]  Edward M. Fox,et al.  Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period , 2019, mSphere.

[6]  Patricia A. Hingston,et al.  Comparative Analysis of Listeria monocytogenes Plasmids and Expression Levels of Plasmid-Encoded Genes during Growth under Salt and Acid Stress Conditions , 2019, Toxins.

[7]  Juno Thomas,et al.  Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates , 2019, Foodborne pathogens and disease.

[8]  M. Wagner,et al.  Plasmids contribute to food processing environment-associated stress survival in three Listeria monocytogenes ST121, ST8, and ST5 strains. , 2019, International journal of food microbiology.

[9]  Olivier Disson,et al.  Hypervirulent Listeria monocytogenes clones’ adaption to mammalian gut accounts for their association with dairy products , 2019, Nature Communications.

[10]  Hugh Rand,et al.  Interpreting Whole-Genome Sequence Analyses of Foodborne Bacteria for Regulatory Applications and Outbreak Investigations , 2018, Front. Microbiol..

[11]  W. Silva,et al.  Food isolate Listeria monocytogenes harboring tetM gene plasmid-mediated exchangeable to Enterococcus faecalis on the surface of processed cheese. , 2018, Food research international.

[12]  A. De Cesare,et al.  Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated Within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology , 2018, Front. Microbiol..

[13]  M. Lindström,et al.  Occurrence, Persistence, and Contamination Routes of Listeria monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: a Longitudinal Study , 2017, Applied and Environmental Microbiology.

[14]  M. Lindström,et al.  Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes , 2017, mSphere.

[15]  M. Brockhurst,et al.  Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  Dereje D. Jima,et al.  The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence , 2017, Applied and Environmental Microbiology.

[17]  S. Bentley,et al.  Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis , 2017, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[18]  H. Korkeala,et al.  Comparative Phenotypic and Genotypic Analysis of Swiss and Finnish Listeria monocytogenes Isolates with Respect to Benzalkonium Chloride Resistance , 2017, Front. Microbiol..

[19]  Gary Van Domselaar,et al.  A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens , 2017, Front. Microbiol..

[20]  Markus Göker,et al.  VICTOR: genome-based phylogeny and classification of prokaryotic viruses , 2017, bioRxiv.

[21]  Lonneke Scheffer,et al.  Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary , 2016, Genome Biology.

[22]  Eduardo P C Rocha,et al.  Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes , 2016, Nature Microbiology.

[23]  K. Palmer,et al.  CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis , 2016, mSphere.

[24]  David S. Wishart,et al.  PHASTER: a better, faster version of the PHAST phage search tool , 2016, Nucleic Acids Res..

[25]  R. Holley,et al.  Transfer of antibiotic resistance from Enterococcus faecium of fermented meat origin to Listeria monocytogenes and Listeria innocua , 2016, Letters in applied microbiology.

[26]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[27]  Andrew J. Page,et al.  Roary: rapid large-scale prokaryote pan genome analysis , 2015, bioRxiv.

[28]  Justin Zobel,et al.  Bandage: interactive visualization of de novo genome assemblies , 2015, bioRxiv.

[29]  Jacqueline A. Keane,et al.  Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins , 2014, Nucleic acids research.

[30]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[31]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[32]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[33]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[34]  Alexander F. Auch,et al.  Genome sequence-based species delimitation with confidence intervals and improved distance functions , 2013, BMC Bioinformatics.

[35]  A. Goesmann,et al.  Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome , 2013, BMC Genomics.

[36]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[37]  S. Kathariou,et al.  Two Novel Type II Restriction-Modification Systems Occupying Genomically Equivalent Locations on the Chromosomes of Listeria monocytogenes Strains , 2012, Applied and Environmental Microbiology.

[38]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[39]  Mitchell J. Sullivan,et al.  Easyfig: a genome comparison visualizer , 2011, Bioinform..

[40]  Philippe Horvath,et al.  The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA , 2010, Nature.

[41]  A. Goesmann,et al.  Comparative Analysis of Plasmids in the Genus Listeria , 2010, PloS one.

[42]  H. Korkeala,et al.  Listeria monocytogenes contamination in pork can originate from farms. , 2010, Journal of food protection.

[43]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[44]  Markus Göker,et al.  Molecular Taxonomy of Phytopathogenic Fungi: A Case Study in Peronospora , 2009, PloS one.

[45]  Edward M. Fox,et al.  Listeria monocytogenes in the Irish dairy farm environment. , 2009, Journal of food protection.

[46]  R. Juste,et al.  Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain , 2009, BMC veterinary research.

[47]  H. Korkeala,et al.  An 8-year surveillance of the diversity and persistence of Listeria monocytogenes in a chilled food processing plant analyzed by amplified fragment length polymorphism. , 2007, Journal of food protection.

[48]  H. Korkeala,et al.  Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures , 2007 .

[49]  M. Wiedmann,et al.  Longitudinal monitoring of Listeria monocytogenes contamination patterns in a farmstead dairy processing facility. , 2007, Journal of dairy science.

[50]  N. Freitag,et al.  How the Bacterial Pathogen Listeria monocytogenes Mediates the Switch from Environmental Dr. Jekyll to Pathogenic Mr. Hyde , 2006, Infection and Immunity.

[51]  T. Wood,et al.  Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility , 2006, Biotechnology and bioengineering.

[52]  M. Wiedmann,et al.  Ecology and Transmission of Listeria monocytogenes Infecting Ruminants and in the Farm Environment , 2004, Applied and Environmental Microbiology.

[53]  Janne Lundén,et al.  Adaptive and cross-adaptive responses of persistent and non-persistent Listeria monocytogenes strains to disinfectants. , 2003, International journal of food microbiology.

[54]  A. Gilmour,et al.  Characterization of Recurrent and Sporadic Listeria monocytogenes Isolates from Raw Milk and Nondairy Foods by Pulsed-Field Gel Electrophoresis, Monocin Typing, Plasmid Profiling, and Cadmium and Antibiotic Resistance Determination , 2001, Applied and Environmental Microbiology.

[55]  J. Samelis,et al.  Incidence and principal sources of Listeria spp. and Listeria monocytogenes contamination in processed meats and a meat processing plant , 1999 .

[56]  W. Holzapfel,et al.  Enterococci at the crossroads of food safety? , 1999, International journal of food microbiology.

[57]  H. Korkeala,et al.  Characterization of Listeria monocytogenes from an ice cream plant by serotyping and pulsed-field gel electrophoresis. , 1999, International journal of food microbiology.

[58]  P. Cossart,et al.  Plasmid-borne cadmium resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917 , 1994, Journal of bacteriology.

[59]  N. Saunders,et al.  Rapid extraction of bacterial genomic DNA with guanidium thiocyanate , 1989 .