O C ] 2 O ct 2 01 8 A variational formula for risk-sensitive control of diffusions in R d

[1]  S. Varadhan,et al.  On a variational formula for the principal eigenvalue for operators with maximum principle. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Varadhan,et al.  On the principal eigenvalue of second‐order elliptic differential operators , 1976 .

[3]  S. Varadhan,et al.  The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .

[4]  Luca Rossi,et al.  On the principal eigenvalue of elliptic operators in $\R^N$ and applications , 2006 .

[5]  B. Sirakov,et al.  Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators , 2008 .

[6]  S. Armstrong The Dirichlet problem for the Bellman equation at resonance , 2008, 0812.1327.

[7]  H. Berestycki,et al.  Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains , 2010, 1008.4871.

[8]  Anup Biswas An eigenvalue approach to the risk sensitive control problem in near monotone case , 2011, Syst. Control. Lett..

[9]  A. Arapostathis,et al.  Risk-Sensitive Control and an Abstract Collatz–Wielandt Formula , 2013, 1312.5834.

[10]  A. Arapostathis,et al.  Infinite horizon risk-sensitive control of diffusions without any blanket stability assumptions , 2016, 1601.00258.

[11]  A. Arapostathis,et al.  Strict monotonicity of principal eigenvalues of elliptic operators in Rd and risk-sensitive control , 2017, Journal de Mathématiques Pures et Appliquées.