Application of the natural stress formulation for solving unsteady viscoelastic contraction flows

Abstract We present a numerical scheme for a previously unexploited formulation of the equations for unsteady viscoelastic flow. The formulation aligns the polymer stress along particle paths/streamlines, utilising the characteristic curves associated with the hyperbolic part of the constitutive equations. We illustrate the approach for the Oldroyd-B model in the benchmark 4:1 contraction for moderate elasticity numbers. We show that the scheme is able to accurately capture the re-entrant corner singularity for the polymer stresses and the pressure, the latter variable being inaccurately determined by schemes using the traditional formulation in terms of Cartesian polymer stresses. A space-step restriction for stability is derived, which can be numerically limiting in certain recirculation regions. This contrasts with the equivalent space-step restriction for the formulation in Cartesian stresses, which is limiting in flow regions of high velocity gradients, for example, at sharp corners in contraction flows.

[1]  Fernando T. Pinho,et al.  Dynamics of high-Deborah-number entry flows: a numerical study , 2011 .

[2]  M. Crochet,et al.  Finite-element Simulation of Viscoelastic Fluids of the Integral Type , 1985 .

[3]  Fernando T. Pinho,et al.  Plane contraction flows of upper convected Maxwell and Phan-Thien–Tanner fluids as predicted by a finite-volume method , 1999 .

[4]  Dieter Bothe,et al.  A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes , 2017, 1702.02475.

[5]  Raanan Fattal,et al.  Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation , 2005 .

[6]  M. F. Webster,et al.  Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows , 2002 .

[7]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[8]  M. A. Alves,et al.  Stabilization of an open-source finite-volume solver for viscoelastic fluid flows , 2017 .

[9]  F. Pinho,et al.  A convergent and universally bounded interpolation scheme for the treatment of advection , 2003 .

[10]  A. Duarte,et al.  Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems , 2008 .

[11]  Raz Kupferman,et al.  Simulation of Viscoelastic Fluids , 1998 .

[12]  M. F. Tomé,et al.  Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows , 2011 .

[13]  F. Galindo-Rosales,et al.  Microdevices for extensional rheometry of low viscosity elastic liquids: a review , 2013 .

[14]  S. Muller,et al.  Direct measurements of viscoelastic flows of DNA in a 2:1 abrupt planar micro-contraction , 2008 .

[15]  Youngdon Kwon,et al.  Numerical aspects in modeling high Deborah number flow and elastic instability , 2014, J. Comput. Phys..

[16]  D. V. Boger,et al.  A comprehensive experimental investigation of tubular entry flow of viscoelastic fluids. Part II. The velocity field in stable flow , 1978 .

[17]  D. V. Boger,et al.  A comprehensive experimental investigation of tubular entry flow of viscoelastic fluids: Part III. Unstable flow , 1979 .

[18]  R. Codina,et al.  Variational multi-scale stabilized formulations for the stationary three-field incompressible viscoelastic flow problem , 2014 .

[19]  K. Walters,et al.  Viscoelastic contraction flows: comparison of axisymmetric and planar configurations , 2002 .

[20]  T. Phillips,et al.  Comparison of creeping and inertial flow of an Oldroyd B fluid through planar and axisymmetric contractions , 2002 .

[21]  E. Hinch The flow of an Oldroyd fluid around a sharp corner , 1993 .

[22]  Michel Deville,et al.  Time-dependent algorithms for the simulation of viscoelastic flows with spectral element methods: applications and stability , 2003 .

[23]  F. Pinho,et al.  Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions , 2003 .

[24]  P. Colella,et al.  A stable and convergent scheme for viscoelastic flow in contraction channels , 2005 .

[25]  On the characteristics and compatibility equations for the UCM model fluid , 2008 .

[26]  D. V. Boger Viscoelastic Flows Through Contractions , 1987 .

[27]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[28]  Oliver G. Harlen,et al.  A split Lagrangian-Eulerian method for simulating transient viscoelastic flows , 1995 .

[29]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[30]  Ole Hassager,et al.  Working group on numerical techniques , 1988 .

[31]  Roland Keunings,et al.  Numerical-integration of Differential Viscoelastic Models , 1991 .

[32]  R. Armstrong,et al.  Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions , 1991, Journal of Fluid Mechanics.

[33]  Marcel Crochet,et al.  Plane flow of a fluid of second grade through a contraction , 1976 .

[34]  D. V. Boger,et al.  A comprehensive experimental investigation of tubular entry flow of viscoelastic fluids: Part I. Vortex characteristics in stable flow , 1978 .

[35]  K. Ahn,et al.  High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid , 2005 .

[36]  R. Keiller Entry-flow calculations for the Oldroyd-B and FENE equations , 1993 .

[37]  F. Pinho,et al.  Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case , 2007 .

[38]  M. Schäfer,et al.  A comparison of stabilisation approaches for finite-volume simulation of viscoelastic fluid flow , 2013 .

[39]  S. White,et al.  Review of the entry flow problem: Experimental and numerical , 1987 .

[40]  F. Baaijens Mixed finite element methods for viscoelastic flow analysis : a review , 1998 .

[41]  M. Renardy,et al.  Symmetric factorization of the conformation tensor in viscoelastic fluid models , 2010, 1006.3488.

[42]  M. Renardy How to integrate the upper convected Maxwell (UCM) stresses near a singularity (and maybe elsewhere, too) , 1994 .

[43]  K. Chiba,et al.  Anomalous flow patterns in viscoelastic entry flow through a planar contraction , 1990 .

[44]  J. Hattel,et al.  Vortex behavior of the Oldroyd-B fluid in the 4-1 planar contraction simulated with the streamfunction–log-conformation formulation , 2016 .

[45]  Gareth H. McKinley,et al.  Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries , 2007 .

[46]  Manuel A. Alves,et al.  A numerical study of the Kernel-conformation transformation for transient viscoelastic fluid flows , 2015, J. Comput. Phys..

[47]  J. Evans Re-entrant corner flows of Oldroyd-B fluids , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  Ramon Codina,et al.  First, second and third order fractional step methods for the three-field viscoelastic flow problem , 2015, J. Comput. Phys..

[49]  P. M. Phillips,et al.  The numerical prediction of planar viscoelastic contraction flows using the pom-pom model and higher-order finite volume schemes , 2007, J. Comput. Phys..