Karp–Sipser on Random Graphs with a Fixed Degree Sequence

Let Δ â‰¥ 3 be an integer. Given a fixed z ∈ +Δ such that zΔ > 0, we consider a graph Gz drawn uniformly at random from the collection of graphs with zin vertices of degree i for i = 1,.i¾ .i¾ .,Δ. We study the performance of the Karp-Sipser algorithm when applied to Gz. If there is an index I´ > 1 such that z1 =.i¾ .i¾ . = zI´-1 = 0 and I´zI´,.i¾ .i¾ .,ΔzΔ is a log-concave sequence of positive reals, then with high probability the Karp-Sipser algorithm succeeds in finding a matching with n ∥ z ∥ 1/2-o(n1-e) edges in Gz, where e = e (Δ, z) is a constant.

[1]  Alan Frieze Perfect matchings in random bipartite graphs with minimal degree at least 2 , 2005 .

[2]  Nicholas C. Wormald,et al.  Colouring Random 4-Regular Graphs , 2007, Combinatorics, Probability and Computing.

[3]  B. Pittel,et al.  Maximum matchings in sparse random graphs: Karp-Sipser revisited , 1998 .

[4]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[5]  Boris G. Pittel,et al.  Existence of a perfect matching in a random (1+e-1)--out bipartite graph , 2003, J. Comb. Theory, Ser. B.

[6]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[7]  N. Wormald The differential equation method for random graph processes and greedy algorithms , 1999 .

[8]  A. RÉNY,et al.  ON THE EXISTENCE OF A FACTOR OF DEGREE ONE OF A CONNECTED RANDOM GRAPH , 2004 .

[9]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  B. Bollobás Combinatorics: Random graphs , 1981 .

[12]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  David W. Walkup,et al.  Matchings in random regular bipartite digraphs , 1980, Discret. Math..

[14]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[15]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[16]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[17]  M. Sipser,et al.  Maximum matching in sparse random graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[18]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[19]  Alan M. Frieze Maximum matchings in a class of random graphs , 1986, J. Comb. Theory, Ser. B.

[20]  Alan M. Frieze,et al.  Perfect matchings in random graphs with prescribed minimal degree , 2003, SODA '03.

[21]  Yuri Tschinkel,et al.  Trends in Mathematics , 2008 .

[22]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.