Neighbor sum distinguishing total chromatic number of planar graphs

Let G = (V(G), E(G)) be a graph and ϕ be a proper k-total coloring of G. Set fϕ(v)=∑uv∈E(G)ϕ(uv)+ϕ(v), for each v ∈ V(G). If fϕ(u) ≠ fϕ(v) for each edge uv ∈ E(G), the coloring ϕ is called a k-neighbor sum distinguishing total coloring of G. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by χΣ″(G). In this paper, by using the famous Combinatorial Nullstellensatz, we determine χΣ″(G) for any planar graph G with Δ(G) ≥ 13.

[1]  Jihui Wang,et al.  Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles , 2017, Theor. Comput. Sci..

[2]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[3]  Jingjing Yao,et al.  Neighbor sum distinguishing total coloring of 2-degenerate graphs , 2017, J. Comb. Optim..

[4]  Qiaoling Ma,et al.  Neighbor sum distinguishing total colorings of triangle free planar graphs , 2015 .

[5]  Xiaowei Yu,et al.  Neighbor sum distinguishing total choosability of planar graphs , 2016, J. Comb. Optim..

[6]  Mariusz Wozniak,et al.  On the Total-Neighbor-Distinguishing Index by Sums , 2015, Graphs Comb..

[7]  Lin Sun,et al.  Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10 , 2017, Appl. Math. Comput..

[8]  Changqing Xu,et al.  Neighbor sum distinguishing total chromatic number of K4-minor free graph , 2017 .

[9]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs , 2015, J. Comb. Optim..

[10]  Aijun Dong,et al.  Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree , 2014 .

[11]  Guanghui Wang,et al.  The adjacent vertex distinguishing total chromatic numbers of planar graphs with $$\Delta =10$$Δ=10 , 2017, J. Comb. Optim..

[12]  B. Yao,et al.  On adjacent-vertex-distinguishing total coloring of graphs , 2005 .

[13]  Xiaowei Yu,et al.  On the neighbor sum distinguishing total coloring of planar graphs , 2016, Theor. Comput. Sci..

[14]  Chang Qing Xu,et al.  Neighbor sum distinguishing total coloring of planar graphs without 4-cycles , 2017, J. Comb. Optim..

[15]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[16]  Jihui Wang,et al.  Neighbor sum distinguishing total choosability of planar graphs without 4-cycles , 2016, Discret. Appl. Math..

[17]  Chang Qing Xu,et al.  A note on the neighbor sum distinguishing total coloring of planar graphs , 2016, Theor. Comput. Sci..

[18]  Guanghui Wang,et al.  Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ , 2015, Discret. Appl. Math..

[19]  Jingjing Yao,et al.  Neighbor Sum (Set) Distinguishing Total Choosability of d-Degenerate Graphs , 2016, Graphs Comb..

[20]  Huang DanJun,et al.  Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree , 2012 .

[21]  Yan Guiying,et al.  Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz , 2014 .