Quadrature by expansion: A new method for the evaluation of layer potentials

Integral equation methods for the solution of partial differential equations, when coupled with suitable fast algorithms, yield geometrically flexible, asymptotically optimal and well-conditioned schemes in either interior or exterior domains. The practical application of these methods, however, requires the accurate evaluation of boundary integrals with singular, weakly singular or nearly singular kernels. Historically, these issues have been handled either by low-order product integration rules (computed semi-analytically), by singularity subtraction/cancellation, by kernel regularization and asymptotic analysis, or by the construction of special purpose "generalized Gaussian quadrature" rules. In this paper, we present a systematic, high-order approach that works for any singularity (including hypersingular kernels), based only on the assumption that the field induced by the integral operator is locally smooth when restricted to either the interior or the exterior. Discontinuities in the field across the boundary are permitted. The scheme, denoted QBX (quadrature by expansion), is easy to implement and compatible with fast hierarchical algorithms such as the fast multipole method. We include accuracy tests for a variety of integral operators in two dimensions on smooth and corner domains.

[1]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[2]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[3]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[4]  L. R. Scott,et al.  An analysis of quadrature errors in second-kind boundary integral methods , 1989 .

[5]  David J. Haroldsen,et al.  Numerical Calculation of Three-Dimensional Interfacial Potential Flows Using the Point Vortex Method , 1998, SIAM J. Sci. Comput..

[6]  Alex H. Barnett,et al.  Evaluation of Layer Potentials Close to the Boundary for Laplace and Helmholtz Problems on Analytic Planar Domains , 2013, SIAM J. Sci. Comput..

[7]  Oscar Bruno,et al.  Fast high-order algorithms and well-conditioned integral equations for high-frequency sound-hard scattering problems , 2011 .

[8]  Charles L. Epstein,et al.  On the Convergence of Local Expansions of Layer Potentials , 2012, SIAM J. Numer. Anal..

[9]  M.A. Khayat,et al.  Numerical evaluation of singular and near-singular potential Integrals , 2005, IEEE Transactions on Antennas and Propagation.

[10]  James Bremer,et al.  A Nonlinear Optimization Procedure for Generalized Gaussian Quadratures , 2010, SIAM J. Sci. Comput..

[11]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[12]  J. S. Hesthaven,et al.  Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method , 2011, 1102.3190.

[13]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[14]  G. Lombardi,et al.  Machine Precision Evaluation of Singular and Nearly Singular Potential Integrals by Use of Gauss Quadrature Formulas for Rational Functions , 2008, IEEE Transactions on Antennas and Propagation.

[15]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[16]  Vladimir Rokhlin,et al.  Numerical quadratures for singular and hypersingular integrals , 2001 .

[17]  Wolfgang Hackbusch,et al.  On numerical cubatures of nearly singular surface integrals arising in BEM collocation , 1994, Computing.

[18]  J. Thomas Beale,et al.  A Method for Computing Nearly Singular Integrals , 2000, SIAM J. Numer. Anal..

[19]  Moshe Israeli,et al.  Quadrature methods for periodic singular and weakly singular Fredholm integral equations , 1988, J. Sci. Comput..

[20]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .

[21]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[22]  Lars Mönch,et al.  On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack , 2000 .

[23]  John Strain,et al.  Locally Corrected Multidimensional Quadrature Rules for Singular Functions , 1995, SIAM J. Sci. Comput..

[24]  J. Helsing Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial , 2012, 1207.6737.

[25]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[26]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[27]  R. Leis,et al.  Zur Dirichletschen Randwertaufgabe des Außenraumes der Schwingungsgleichung , 1965 .

[28]  Norman Yarvin,et al.  Generalized Gaussian Quadratures and Singular Value Decompositions of Integral Operators , 1998, SIAM J. Sci. Comput..

[29]  L. M. Delvest,et al.  A Numerical Method for Locating the Zeros of an Analytic Function , 2010 .

[30]  J. Bremer On the Nyström discretization of integral equations on planar curves with corners , 2012 .

[31]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[32]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[33]  L. M. Delves,et al.  On numerical contour integration round a closed contour , 1967 .

[34]  Michael J. Shelley,et al.  High-Order and Efficient Methods for the Vorticity Formulation of the Euler Equations , 1993, SIAM J. Sci. Comput..

[35]  Andreas Kloeckner Fast Algorithms for the Evaluation of Layer Potentials using “Quadrature by Expansion” , 2013 .

[36]  Leslie Greengard,et al.  Remarks on the implementation of wideband FMM for the Helmholtz equation in two dimensions , 2006 .

[37]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[38]  Johan Helsing,et al.  On the evaluation of layer potentials close to their sources , 2008, J. Comput. Phys..

[39]  Seppo Järvenpää,et al.  Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra , 2003 .

[40]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[41]  R. Kanwal Linear Integral Equations , 1925, Nature.

[42]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[43]  Petter Kolm,et al.  Quadruple and octuple layer potentials in two dimensions , 2000 .

[44]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[45]  Leandro Farina Evaluation of Single Layer Potentials over Curved Surfaces , 2001, SIAM J. Sci. Comput..

[46]  Oscar P. Bruno,et al.  Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems , 2012 .

[47]  Lexing Ying,et al.  A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains , 2006, J. Comput. Phys..

[48]  Johan Helsing,et al.  Integral equation methods for elliptic problems with boundary conditions of mixed type , 2009, J. Comput. Phys..

[49]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[50]  Rainer Kress,et al.  Boundary integral equations in time-harmonic acoustic scattering , 1991 .

[51]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[52]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[53]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .