Distributed Coordination Control of Multiagent Systems While Preserving Connectedness

This paper addresses the connectedness issue in multiagent coordination, i.e., the problem of ensuring that a group of mobile agents stays connected while achieving some performance objective. In particular, we study the rendezvous and the formation control problems over dynamic interaction graphs, and by adding appropriate weights to the edges in the graphs, we guarantee that the graphs stay connected.

[1]  M. Egerstedt,et al.  On the structural complexity of multi-agent robot formations , 2004, Proceedings of the 2004 American Control Conference.

[2]  A. Jadbabaie,et al.  On the stability of the Kuramoto model of coupled nonlinear oscillators , 2005, Proceedings of the 2004 American Control Conference.

[3]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[4]  Giancarlo Ferrari-Trecate,et al.  Analysis of coordination in multi-agent systems through partial difference equations , 2006, IEEE Transactions on Automatic Control.

[5]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[6]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[7]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[9]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[10]  R. Beard,et al.  Consensus of information under dynamically changing interaction topologies , 2004, Proceedings of the 2004 American Control Conference.

[11]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[12]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[13]  R. Murray,et al.  Agreement problems in networks with directed graphs and switching topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[14]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[15]  B. Anderson,et al.  A FRAMEWORK FOR MAINTAINING FORMATIONS BASED ON RIGIDITY , 2002 .

[16]  Xiaoming Hu,et al.  Control of mobile platforms using a virtual vehicle approach , 2001, IEEE Trans. Autom. Control..

[17]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[18]  Petter Ögren,et al.  A control Lyapunov function approach to multi-agent coordination , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[19]  J.-M. McNew,et al.  Locally Interacting Hybrid Systems with Embedded Graph Grammars , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[20]  M. Mesbahi State-dependent graphs , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[21]  Giuseppe Notarstefano,et al.  Maintaining limited-range connectivity among second-order agents , 2006, 2006 American Control Conference.

[22]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[23]  R.M. Murray,et al.  Distributed structural stabilization and tracking for formations of dynamic multi-agents , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  A. Jadbabaie,et al.  Formation control for a cooperative multi-agent system using decentralized navigation functions , 2006, 2006 American Control Conference.

[25]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[26]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[27]  M. Mesbahi On a dynamic extension of the theory of graphs , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[28]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[29]  Xiaoming Hu,et al.  A control Lyapunov function approach to multiagent coordination , 2002, IEEE Trans. Robotics Autom..

[30]  Mireille E. Broucke,et al.  Local control strategies for groups of mobile autonomous agents , 2004, IEEE Transactions on Automatic Control.

[31]  Ichiro Suzuki,et al.  Distributed motion coordination of multiple mobile robots , 1990, Proceedings. 5th IEEE International Symposium on Intelligent Control 1990.

[32]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[33]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[34]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[35]  Amit Kumar,et al.  Formation Stabilization of Multiple Agents Using Decentralized Navigation Functions , 2005, Robotics: Science and Systems.

[36]  Magnus Egerstedt,et al.  Laplacian Sheep: A Hybrid, Stop-Go Policy for Leader-Based Containment Control , 2006, HSCC.

[37]  J. A. Fax,et al.  Graph Laplacians and Stabilization of Vehicle Formations , 2002 .

[38]  A. Bensoussan,et al.  Difference equations on weighted graphs , 2005 .

[39]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[40]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[41]  Richard M. Murray,et al.  Flocking with obstacle avoidance: cooperation with limited communication in mobile networks , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  F. Bullo,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in d dimensions , .

[43]  Qin Chen,et al.  Distributed motion coordination of multiple robots , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).