Reciprocating Link Hierarchical Clustering

A new clustering algorithm, called reciprocating link hierarchical clustering, is proposed which considers the neighborhood of the points in the data set in term of their reciprocating affinity, while accommodating the agglomerative hierarchical clustering paradigm. In comparison to six conventional clustering methods, the proposed method has been shown to achieve better results with cases of clusters of different sizes and varying densities. It successfully replicates the results of the mutual k-nearest neighbor method, and extends the capability to agglomerative hierarchical clustering.

[1]  Haiqing Li,et al.  Adjustable preference affinity propagation clustering , 2017, Pattern Recognit. Lett..

[2]  H. Edelsbrunner,et al.  Efficient algorithms for agglomerative hierarchical clustering methods , 1984 .

[3]  L. Hubert Approximate Evaluation Techniques for the Single-Link and Complete-Link Hierarchical Clustering Procedures , 1974 .

[4]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[5]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[6]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[7]  Ofer Engel,et al.  Clusters, Recipients and Reciprocity: Extracting More Value from Email Communication Networks , 2011 .

[8]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .

[9]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[10]  M. R. Brito,et al.  Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection , 1997 .

[11]  Wen-Xu Wang,et al.  Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Ray A. Jarvis,et al.  Clustering Using a Similarity Measure Based on Shared Near Neighbors , 1973, IEEE Transactions on Computers.

[13]  Kenneth S. Berenhaut,et al.  A new look at clustering coefficients with generalization to weighted and multi-faction networks , 2018, Soc. Networks.

[14]  Yusheng Li,et al.  Clustering coefficients of large networks , 2017, Inf. Sci..

[15]  Mikko Kivelä,et al.  Generalizations of the clustering coefficient to weighted complex networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[17]  Zhen Hu,et al.  Clustering algorithm based on mutual K‐nearest neighbor relationships , 2012, Stat. Anal. Data Min..

[18]  G. Krishna,et al.  Agglomerative clustering using the concept of mutual nearest neighbourhood , 1978, Pattern Recognit..

[19]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[20]  Silvio Lattanzi,et al.  Affinity Clustering: Hierarchical Clustering at Scale , 2017, NIPS.

[21]  Hans-Peter Kriegel,et al.  DBSCAN Revisited, Revisited , 2017, ACM Trans. Database Syst..

[22]  Ulrich Bodenhofer,et al.  APCluster: an R package for affinity propagation clustering , 2011, Bioinform..

[23]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[24]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[25]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.