Expanding TRAF function: TRAF3 as a tri-faced immune regulator

[1]  Qiang Sun,et al.  A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response , 2011, Cell Research.

[2]  G. Bishop,et al.  TNF Receptor-Associated Factor 3 Is Required for T Cell-Mediated Immunity and TCR/CD28 Signaling , 2011, The Journal of Immunology.

[3]  Yufang Shi,et al.  Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling , 2010, The Journal of experimental medicine.

[4]  J. Casanova,et al.  Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. , 2010, Immunity.

[5]  D. Vaux,et al.  Asymmetric recruitment of cIAPs by TRAF2. , 2010, Journal of molecular biology.

[6]  Cheng Luo,et al.  SPHINGOSINE-1-PHOSPHATE: A MISSING COFACTOR FOR THE E3 UBIQUITIN LIGASE TRAF2 , 2010, Nature.

[7]  S. Akira,et al.  The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors , 2010, Nature Immunology.

[8]  Hao Wu,et al.  Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. , 2010, Molecular cell.

[9]  C. Ware,et al.  Allosteric Regulation of the Ubiquitin:NIK and Ubiquitin:TRAF3 E3 Ligases by the Lymphotoxin-β Receptor* , 2010, The Journal of Biological Chemistry.

[10]  S. Akira,et al.  Pattern Recognition Receptors and Inflammation , 2010, Cell.

[11]  D. Vaux,et al.  RIPK1 is not essential for TNFR1-induced activation of NF-κB , 2010, Cell Death and Differentiation.

[12]  Christoph H Emmerich,et al.  Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. , 2009, Molecular cell.

[13]  Hao Wu,et al.  Structural basis for the lack of E2 interaction in the RING domain of TRAF2. , 2009, Biochemistry.

[14]  Zhijian J. Chen,et al.  Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. , 2009, Molecular cell.

[15]  Zhijian J. Chen,et al.  A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. , 2009, Molecular cell.

[16]  S. Akira,et al.  Two Mechanistically and Temporally Distinct NF-κB Activation Pathways in IL-1 Signaling , 2009, Science Signaling.

[17]  Erinna F. Lee,et al.  TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis , 2009, The Journal of Biological Chemistry.

[18]  Qiang Sun,et al.  The E3 Ubiquitin Ligase Triad3A Negatively Regulates the RIG-I/MAVS Signaling Pathway by Targeting TRAF3 for Degradation , 2009, PLoS pathogens.

[19]  T. Kalkan,et al.  Tumor necrosis factor-receptor-associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. , 2009, Molecular biology of the cell.

[20]  G. Barton,et al.  A cell biological view of Toll-like receptor function: regulation through compartmentalization , 2009, Nature Reviews Immunology.

[21]  Zhijian J. Chen,et al.  Ubiquitylation in innate and adaptive immunity , 2009, Nature.

[22]  M. Karin,et al.  Regulation and function of NF-kappaB transcription factors in the immune system. , 2009, Annual review of immunology.

[23]  M. Karin,et al.  TNFR signaling: ubiquitin‐conjugated TRAFfic signals control stop‐and‐go for MAPK signaling complexes , 2009, Immunological reviews.

[24]  Cun-Yu Wang,et al.  MAVS Self-Association Mediates Antiviral Innate Immune Signaling , 2009, Journal of Virology.

[25]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[26]  J. Keats,et al.  Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling , 2008, Nature Immunology.

[27]  Shizuo Akira,et al.  Toll‐like Receptor and RIG‐1‐like Receptor Signaling , 2008, Annals of the New York Academy of Sciences.

[28]  M. Yamashita,et al.  TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. , 2008, Molecular cell.

[29]  George Kollias,et al.  Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses , 2008, Nature Immunology.

[30]  T. Mak,et al.  Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors , 2008, Proceedings of the National Academy of Sciences.

[31]  M. Karin,et al.  Essential Cytoplasmic Translocation of a Cytokine Receptor–Assembled Signaling Complex , 2008, Science.

[32]  R. Medzhitov Origin and physiological roles of inflammation , 2008, Nature.

[33]  F. Mackay,et al.  TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. , 2008, Immunity.

[34]  G. Cheng,et al.  Control of canonical NF-κB activation through the NIK–IKK complex pathway , 2008, Proceedings of the National Academy of Sciences.

[35]  S. Akira,et al.  TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β , 2008, Nature Immunology.

[36]  E. Pietras,et al.  A Deubiquitinase That Regulates Type I Interferon Production , 2007, Science.

[37]  David L. Vaux,et al.  IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis , 2007, Cell.

[38]  Vishva M. Dixit,et al.  IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis , 2007, Cell.

[39]  A. Smahi,et al.  TLR3 Deficiency in Patients with Herpes Simplex Encephalitis , 2007, Science.

[40]  G. Bishop,et al.  Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. , 2007, Immunity.

[41]  L. Bruhn,et al.  Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. , 2007, Cancer cell.

[42]  L. Staudt,et al.  Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. , 2007, Cancer cell.

[43]  G. Cheng,et al.  Specificity of TRAF3 in Its Negative Regulation of the Noncanonical NF-κB Pathway* , 2006, Journal of Biological Chemistry.

[44]  G. Cheng,et al.  Rescue of TRAF3-null mice by p100 NF-κB deficiency , 2006, The Journal of experimental medicine.

[45]  Keiji Tanaka,et al.  A ubiquitin ligase complex assembles linear polyubiquitin chains , 2006, The EMBO journal.

[46]  Michael Karin,et al.  Regulation and Function of IKK and IKK-Related Kinases , 2006, Science's STKE.

[47]  E. Pietras,et al.  Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif , 2006, The EMBO journal.

[48]  K. Ishii,et al.  Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling , 2006, Nature Immunology.

[49]  G. Bishop,et al.  Cooperation between TNF Receptor-Associated Factors 1 and 2 in CD40 Signaling1 , 2006, The Journal of Immunology.

[50]  M. Mann,et al.  Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6 , 2006, Nature.

[51]  A. Shahangian,et al.  Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response , 2006, Nature.

[52]  S. Akira,et al.  Essential function for the kinase TAK1 in innate and adaptive immune responses , 2005, Nature Immunology.

[53]  P. Ramakrishnan,et al.  TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Karin,et al.  Jun Turnover Is Controlled Through JNK-Dependent Phosphorylation of the E3 Ligase Itch , 2004, Science.

[55]  C. Coban,et al.  Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 , 2004, Nature Immunology.

[56]  J. Inoue,et al.  Cutting Edge: TNFR-Associated Factor (TRAF) 6 Is Essential for MyD88-Dependent Pathway but Not Toll/IL-1 Receptor Domain-Containing Adaptor-Inducing IFN-β (TRIF)-Dependent Pathway in TLR Signaling1 , 2004, Journal of Immunology.

[57]  E. Harhaj,et al.  Regulation of the NF-κB-inducing Kinase by Tumor Necrosis Factor Receptor-associated Factor 3-induced Degradation* , 2004, Journal of Biological Chemistry.

[58]  M. Karin,et al.  The two NF-κB activation pathways and their role in innate and adaptive immunity , 2004 .

[59]  G. Xiao,et al.  Induction of p100 Processing by NF-κB-inducing Kinase Involves Docking IκB Kinase α (IKKα) to p100 and IKKα-mediated Phosphorylation* , 2004, Journal of Biological Chemistry.

[60]  A. Ciechanover,et al.  Mechanism of processing of the NF-κB2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCFβ-TrCP ubiquitin ligase , 2004, Oncogene.

[61]  S. Akira,et al.  Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway , 2003, Science.

[62]  M. Walsh,et al.  TRAF‐Mediated TNFR‐Family Signaling , 2002, Current protocols in immunology.

[63]  Hong-shan Wang,et al.  BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells , 2002, Nature Immunology.

[64]  R. Vabulas,et al.  Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments , 2002, European journal of immunology.

[65]  A. Dierich,et al.  Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Michael Karin,et al.  Activation by IKKα of a Second, Evolutionary Conserved, NF-κB Signaling Pathway , 2001, Science.

[67]  Zhijian J. Chen,et al.  TAK1 is a ubiquitin-dependent kinase of MKK and IKK , 2001, Nature.

[68]  M. Karin,et al.  Mammalian MAP kinase signalling cascades , 2001, Nature.

[69]  E. Harhaj,et al.  NF-κB-Inducing Kinase Regulates the Processing of NF-κB2 p100 , 2001 .

[70]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[71]  T. Taniguchi,et al.  Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction , 2000 .

[72]  S. Akira,et al.  Immune Cell Activation by Bacterial Cpg-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor–Associated Factor (Traf)6 , 2000, The Journal of experimental medicine.

[73]  C. Thompson,et al.  TRAF4 deficiency leads to tracheal malformation with resulting alterations in air flow to the lungs. , 2000, The American journal of pathology.

[74]  Melynda Boerm,et al.  Mekk3 is essential for early embryonic cardiovascular development , 2000, Nature Genetics.

[75]  C. Ware,et al.  Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Karin,et al.  Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. , 1999, Genes & development.

[77]  D. Levy,et al.  Differential viral induction of distinct interferon‐α genes by positive feedback through interferon regulatory factor‐7 , 1998, The EMBO journal.

[78]  H. Mischak,et al.  CpG‐DNA‐specific activation of antigen‐presenting cells requires stress kinase activity and is preceded by non‐specific endocytosis and endosomal maturation , 1998, The EMBO journal.

[79]  Stefan Grimm,et al.  The Death Domain Kinase RIP Mediates the TNF-Induced NF-κB Signal , 1998 .

[80]  Z. Cao,et al.  MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. , 1997, Immunity.

[81]  Michael Karin,et al.  Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-κB Activation Prevents Cell Death , 1996, Cell.

[82]  Zhaodan Cao,et al.  TRAF6 is a signal transducer for interleukin-1 , 1996, Nature.

[83]  Mike Rothe,et al.  The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins , 1995, Cell.

[84]  D. Goeddel,et al.  TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40 , 1995, Science.

[85]  D. Goeddel,et al.  The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation , 1995, Cell.

[86]  D. Baltimore,et al.  Involvement of CRAF1, a relative of TRAF, in CD40 signaling , 1995, Science.

[87]  M. Boguski,et al.  A novel RING finger protein interacts with the cytoplasmic domain of CD40. , 1994, The Journal of biological chemistry.

[88]  D. Goeddel,et al.  A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor , 1994, Cell.

[89]  D. Ecker,et al.  Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant , 1994, Molecular and cellular biology.

[90]  D. Ecker,et al.  A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. , 1989, Science.

[91]  M. Karin,et al.  Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines , 2010, Nature Immunology.

[92]  M. Karin,et al.  Kinase MEKK1 is required for CD40-dependent activation of the kinases Jnk and p38, germinal center formation, B cell proliferation and antibody production , 2007, Nature Immunology.

[93]  P. Ramakrishnan,et al.  TNF受容体(TNFR)関連因子(TRAF)3はTRAF結合性TNFRによる非定型的NFκB経路のTRAF2/5介在性活性化の阻害物質として働く , 2005 .

[94]  J. Gohda,et al.  Essential for MyD88-Dependent Pathway but Not Toll/ IL-1 Receptor Domain-Containing Adaptor-Inducing IFN- (TRIF)-Dependent Pathway in TLR Signaling , 2004 .

[95]  M. Karin,et al.  Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. , 2000, Annual review of immunology.