NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR

We present photometric and spectroscopic observations of SN 2007if, an overluminous (M_V = –20.4), red (B – V = 0.16 at B-band maximum), slow-rising (t_(rise) = 24 days) type Ia supernova (SN Ia) in a very faint (M_g = –14.10) host galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at ~9000 km s^(–1). A high signal-to-noise co-addition of the SN spectral time series reveals no Na I D absorption, suggesting negligible reddening in the host galaxy, and the late-time color evolution has the same slope as the Lira relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong maximum in I band and a diversity of iron-peak lines appearing in near-maximum-light spectra. SN 2007if also displays a plateau in the Si II velocity extending as late as +10 days, which we interpret as evidence for an overdense shell in the SN ejecta. We calculate the bolometric light curve of the SN and use it and the Si II velocity evolution to constrain the mass of the shell and the underlying SN ejecta, and demonstrate that SN 2007if is strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of a "tamped detonation" model appropriate for double-degenerate mergers, and assuming no host extinction, we estimate the total mass of the system to be 2.4 ± 0.2 M_☉, with 1.6 ± 0.1 M_☉ of ^(56)Ni and with 0.3-0.5 M_☉ in the form of an envelope of unburned carbon/oxygen. Our modeling demonstrates that the kinematics of shell entrainment provide a more efficient mechanism than incomplete nuclear burning for producing the low velocities typical of super-Chandrasekhar-mass SNe Ia.

[1]  A. Piro The Internal Shear of Type Ia Supernova Progenitors During Accretion and Simmering , 2008, 0801.1107.

[2]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[3]  S. E. Woosley,et al.  On the Origin of the Type Ia Supernova Width-Luminosity Relation , 2006, astro-ph/0609540.

[4]  Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex , 2002, astro-ph/0203491.

[5]  D. Kasen Secondary Maximum in the Near-Infrared Light Curves of Type Ia Supernovae , 2006, astro-ph/0606449.

[6]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[7]  R. Davies,et al.  The SAURON project – I. The panoramic integral-field spectrograph , 2001, astro-ph/0103451.

[8]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[9]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[10]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[11]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[12]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[13]  E. Pian,et al.  SPECTROPOLARIMETRY OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc: NEARLY SPHERICAL EXPLOSION OF SUPER-CHANDRASEKHAR MASS WHITE DWARF , 2009, 0908.2057.

[14]  J. Mathis,et al.  The determination of ultraviolet extinction from the optical and near-infrared , 1988 .

[15]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[16]  Optical Spectra of Supernovae , 2001, astro-ph/0111573.

[17]  Can Differences in the Nickel Abundance in Chandrasekhar-Mass Models Explain the Relation between the Brightness and Decline Rate of Normal Type Ia Supernovae? , 2000, astro-ph/0009490.

[18]  R. Itoh,et al.  EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc , 2009, 0908.2059.

[19]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[20]  J. Prieto,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOUS AND CARBON-RICH SUPERNOVA 2006GZ: A DOUBLE DEGENERATE MERGER? , 2022 .

[21]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[22]  Peter E. Nugent,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[23]  What are gamma-ray bursters , 1990 .

[24]  P. Mazzali,et al.  SUBARU AND KECK OBSERVATIONS OF THE PECULIAR TYPE IA SUPERNOVA 2006GZ AT LATE PHASES , 2008, 0808.0138.

[25]  R. Ellis,et al.  The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey , 2006, astro-ph/0607363.

[26]  S. E. Persson,et al.  A Study of the Type Ia/IIn Supernova 2005gj from X-ray to the Infrared: Paper I , 2007, 0706.4088.

[27]  O. Lahav,et al.  Reconstructed density and velocity fields from the 2MASS redshift survey , 2006, astro-ph/0610005.

[28]  I. Hook,et al.  THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.

[29]  L. Lucy,et al.  The properties of the peculiar type IA supernova 1991bg - II. The amount of ^56Ni and the total ejecta mass determined from spectrum synthesis and energetics considerations , 1997 .

[30]  J. Wheeler,et al.  SN 2005hj: Evidence for Two Classes of Normal-Bright SNe Ia and Implications for Cosmology , 2007, 0705.4467.

[31]  P. Mazzali,et al.  Abundance stratification in type Ia supernovae – II. The rapidly declining, spectroscopically normal SN 2004eo , 2008, 0803.1383.

[32]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[33]  J. Frogel A History of Infrared Extinction at CTIO, Chile, and A Possible Connection with the el Nin~o Phenomenon , 1997, astro-ph/9712188.

[34]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[35]  Kevin Krisciunas,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[36]  K. Maeda,et al.  Observational characteristics and possible asphericity of overluminous Type Ia supernovae , 2008, 0811.2095.

[37]  Constraints on the progenitor systems of type Ia supernovae , 2005, astro-ph/0506415.

[38]  Ramon Miquel,et al.  Effects of systematic uncertainties on the supernova determination of cosmological parameters , 2004 .

[39]  Nicholas B. Suntzeff,et al.  An Atlas of Spectrophotometric Landolt Standard Stars , 2005, astro-ph/0504244.

[40]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[41]  W. M. Wood-Vasey,et al.  Photometry of SN 2002ic and Implications for the Progenitor Mass-Loss History , 2004, astro-ph/0406191.

[42]  Christophe Bonnaud,et al.  SNIFS: a wideband integral field spectrograph with microlens arrays , 2003, SPIE Optical Systems Design.

[43]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[44]  N. Langer,et al.  On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses , 2005, astro-ph/0502133.

[45]  D. Nadyozhin The properties of NI to CO to Fe decay , 1994 .

[46]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996 .

[47]  E. Linder Importance of Supernovae at z<0.1 for Probing Dark Energy , 2006, astro-ph/0609507.

[48]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[49]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[50]  Wen-Cong Chen,et al.  ON THE PROGENITORS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVAE , 2009, 0907.0057.

[51]  William Emmet,et al.  The QUEST Large Area CCD Camera , 2007, astro-ph/0702590.

[52]  P. Nugent,et al.  The Rise Times of High- and Low-Redshift Type Ia Supernovae Are Consistent , 2000, astro-ph/0001049.

[53]  G. Smadja,et al.  Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra , 2006, astro-ph/0611356.

[54]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[55]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[56]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[57]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[58]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[59]  W. Hillebrandt,et al.  Off-center explosions of Chandrasekhar-mass white dwarfs: an explanation of super-bright type Ia supernovae? , 2007, astro-ph/0702344.

[60]  M. Turatto,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2005 .

[61]  Lifan Wang,et al.  Could There Be a Hole in Type Ia Supernovae? , 2003, astro-ph/0311009.

[62]  G. Smadja,et al.  Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope , 2006, astro-ph/0606499.

[63]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[64]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[65]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[66]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[67]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[68]  Stefano Benetti,et al.  A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.