Topological invariants of parabolic G-Higgs bundles

For a semisimple real Lie group G , we study topological properties of moduli spaces of polystable parabolic G -Higgs bundles over a Riemann surface with a divisor of finitely many distinct points. For a split real form of a complex simple Lie group, we compute the dimension of apparent parabolic Teichmüller components. In the case of isometry groups of classical Hermitian symmetric spaces of tube type, we provide new topological invariants for maximal parabolic G -Higgs bundles arising from a correspondence to orbifold Higgs bundles. Using orbifold cohomology we count the least number of connected components of moduli spaces of such objects. We further exhibit an alternative explanation of fundamental results on counting components in the absence of a parabolic structure.

[1]  Michael Thaddeus,et al.  Variation of moduli of parabolic Higgs bundles , 2000, math/0003222.

[2]  Mikio Furuta,et al.  Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points , 1992 .

[3]  A. Ramanathan Stable principal bundles on a compact Riemann surface , 1975 .

[4]  H. Boden,et al.  MODULI SPACES OF PARABOLIC HIGGS BUNDLES AND PARABOLIC K(D) PAIRS OVER SMOOTH CURVES: I , 1996, alg-geom/9610014.

[5]  S. Bradlow,et al.  Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces , 2005, math/0511415.

[6]  Indranil Biswas,et al.  Parabolic ample bundles , 1997 .

[7]  P. Boalch Riemann–Hilbert for tame complex parahoric connections , 2010, 1003.3177.

[8]  Hao Sun,et al.  The Beauville-Narasimhan-Ramanan correspondence for twisted Higgs $V$-bundles and components of parabolic $\text{Sp}(2n,\mathbb{R})$-Higgs moduli , 2019, 1901.09148.

[9]  Ben Nasatyr,et al.  Orbifold Riemann surfaces and the Yang-Mills-Higgs equations , 1995, alg-geom/9504015.

[10]  A relation between the parabolic Chern characters of the de Rham bundles , 2006, math/0603677.

[11]  C. S. Seshadri Moduli of vector bundles on curves with parabolic structures , 1977 .

[12]  R. Ho Algebraic Topology , 2022 .

[13]  Ignasi Mundet i Riera Parabolic vector bundles and equivariant vector bundles , 2001 .

[14]  Oscar Garcia-Prada,et al.  Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group , 2015, Advances in Mathematics.

[15]  E. Witten,et al.  Gauge Theory, Ramification, And The Geometric Langlands Program , 2006, hep-th/0612073.

[16]  Carlos Simpson,et al.  Harmonic bundles on noncompact curves , 1990 .

[17]  H. Konno Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface , 1993 .

[18]  Tobias Strubel Fenchel–Nielsen coordinates for maximal representations , 2012, 1204.0719.

[19]  P. Scott,et al.  The geometries of 3-manifolds , 1983 .

[20]  Indranil Biswas,et al.  Parabolic bundles as orbifold bundles , 1997 .

[21]  I. Biswas Chern classes for parabolic bundles , 1997 .

[22]  Marina Logares Betti Numbers of parabolic U(2,1)-Higgs bundles moduli spaces , 2006 .

[23]  O. García-Prada,et al.  Higgs bundles and surface group representations in the real symplectic group , 2008, 0809.0576.

[24]  Kôji Yokogawa,et al.  Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves , 1993 .

[25]  R. Rubio,et al.  Higgs bundles, the Toledo invariant and the Cayley correspondence , 2015, 1511.07751.

[26]  Kôji Yokogawa,et al.  INFINITESIMAL DEFORMATION OF PARABOLIC HIGGS SHEAVES , 1995 .

[27]  Hao Sun,et al.  Monodromy of rank 2 parabolic Hitchin systems , 2019, Journal of Geometry and Physics.

[28]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[29]  Christopher D. Hacon,et al.  Characterization of abelian varieties , 1999, math/9903184.

[30]  INDRANIL BISWAS,et al.  PARABOLIC HIGGS BUNDLES AND $\Gamma $-HIGGS BUNDLES , 2013, Journal of the Australian Mathematical Society.

[31]  Hans U. Boden,et al.  Representations of orbifold groups and parabolic bundles , 1991 .

[32]  Laura P. Schaposnik,et al.  Monodromy of the SL_2 Hitchin fibration , 2011, 1111.2550.

[33]  Marina Logares Jiménez,et al.  Parabolic U(p,q)-Higgs bundles , 2006 .

[34]  Georgios Kydonakis Model Higgs bundles in exceptional components of the $\text{Sp(4}\text{,}\mathbb{R}\text{)}$-character variety , 2018, 1805.10497.

[35]  I. M. I. Riera Parabolic Higgs Bundles for Real Reductive Lie Groups , 2018, Geometry and Physics: Volume II.

[36]  Y. Kawamata Characterization of abelian varieties , 1981 .

[37]  C. S. Seshadri,et al.  Moduli of vector bundles on curves with parabolic structures , 1980 .

[38]  Marina Logares,et al.  Moduli spaces of parabolic U(p, q)-higgs bundles , 2006 .

[39]  I. Biswas,et al.  Unitary representations of the fundamental group of orbifolds , 2009, Proceedings - Mathematical Sciences.

[40]  L. Schaposnik,et al.  Cayley and Langlands type correspondences for orthogonal Higgs bundles , 2017, 1708.08828.

[41]  V. Munoz,et al.  Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles , 2004 .

[42]  David Baraglia,et al.  Monodromy of rank 2 twisted Hitchin systems and real character varieties , 2015, 1506.00372.

[43]  N. Hitchin,et al.  Nonabelianization of Higgs bundles , 2013, 1307.0960.

[44]  Georgios Kydonakis Model Higgs Bundles in Exceptional Components of the Sp(4,R)-Character Variety , 2018, JOURNAL OF ADVANCES IN MATHEMATICS.

[45]  T. Kawasaki The Riemann-Roch theorem for complex V -manifolds , 1979 .