On Maxwell Equations for Gravitational Field

For explicitly time depending mass density which satisfies a continuity equation, it is shown that Maxwell-like equations for gravitational field follow naturally without any need of General Relativity Theory approximation or related assumptions. As a consequence, it is shown that several features already known in Electrodynamics (Poynting vector, density of energy, tensor stress, and radiation) are totally reproduced for gravitational field.

[1]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[2]  P. Kanti,et al.  Novel ansatzes and scalar quantities in gravito-electromagnetism , 2016, 1610.09819.

[3]  B. Mashhoon On the gravitational analogue of Larmor's theorem , 1993 .

[4]  田中 正,et al.  SUPERSTRING THEORY , 1989, The Lancet.

[5]  Philipp Roser,et al.  Gravitation and cosmology with York time , 2016, 1609.03942.

[6]  Simon J. Clark,et al.  Gauge symmetry and gravito-electromagnetism , 2000 .

[7]  Don Weingarten Geometric formulation of electrodynamics and general relativity in discrete space–time , 1977 .

[8]  Benjamin Schulz Review on the quantization of gravity , 2014, 1409.7977.

[9]  Lin-sen Li Gravitational Radiation Damping and Evolution of the Orbit of Compact Binary Stars (Solution by the Second Perturbation Method) , 2014 .

[10]  J. H. Taylor,et al.  A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16 , 1982 .

[11]  David H. Sattinger,et al.  On the universality of Maxwell’s equations , 2018 .

[12]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[13]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[14]  The LIGO Scientific Collaboration,et al.  Astrophysical Implications of the Binary Black-Hole Merger GW150914 , 2016, 1602.03846.

[15]  D. H. Sattinger,et al.  Gravitation and Special Relativity , 2013, Journal of Dynamics and Differential Equations.

[16]  LAGEOS-type satellites in critical supplementary orbit configuration and the Lense-Thirring effect detection , 2002, gr-qc/0209027.

[17]  Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies , 2001, gr-qc/0110101.

[18]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[19]  J. Mitchard The Theory of Relativity , 1921, Nature.

[20]  P. Kanti,et al.  From GEM to electromagnetism , 2014, 1405.0265.

[21]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[22]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[23]  D. Vollick Palatini approach to Born-Infeld-Einstein theory and a geometric description of electrodynamics , 2003, gr-qc/0309101.

[24]  G. López Force approach to radiation reaction , 2016 .

[25]  A. Einstein,et al.  Die Grundlage der allgemeinen Relativitätstheorie , 1916 .

[26]  Alexandra Witze,et al.  Einstein's gravitational waves found at last , 2016, Nature.

[27]  G. López Generalization of the Force Approach to Radiation Reaction , 2016, 1602.03171.

[28]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[29]  A GRAVITATIONAL AND ELECTROMAGNETIC ANALOGY , 2006 .

[30]  Gravitoelectromagnetic analogy based on tidal tensors , 2006, gr-qc/0612140.

[31]  J. Senovilla,et al.  Very Simple Proof of the Causal Propagation of Gravity in Vacuum , 1997 .