Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?
暂无分享,去创建一个
[1] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.
[2] L. Colombo,et al. Coupling between cold dark matter and dark energy from neutrino mass experiments , 2009, 0902.2737.
[3] L. Colombo,et al. Higher neutrino mass allowed if Cold Dark Matter and Dark Energy are coupled , 2008, 0810.0127.
[4] L. Colombo,et al. Higher neutrino mass allowed if DM and DE are coupled , 2008 .
[5] M. Halpern,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.
[6] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[7] C. Baccigalupi,et al. Coupled and extended quintessence: Theoretical differences and structure formation , 2008, 0802.1086.
[8] F. Atrio-Barandela,et al. Dynamics of interacting quintessence models: Observational constraints , 2007, 0706.3860.
[9] S. Bonometto,et al. Limits on coupling between dark components , 2007, astro-ph/0703303.
[10] G. J. Alner,et al. Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. , 2006, Physical review letters.
[11] L. Colombo,et al. Constraints on quintessence using recent cosmological data , 2006, astro-ph/0607262.
[12] Edward J. Wollack,et al. Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.
[13] J. Neill,et al. The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.
[14] R. Nichol,et al. The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .
[15] J. Lesgourgues,et al. Massive neutrinos and cosmology , 2005, astro-ph/0603494.
[16] N. A. Titov,et al. KATRIN Design Report 2004 , 2005 .
[17] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[18] J. Prieto,et al. Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First 2 Years , 2004, 0811.4424.
[19] G. Miele,et al. Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields , 2004, astro-ph/0408076.
[20] M. Decowski,et al. Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. , 2004, Physical review letters.
[21] T. V. Bullard,et al. Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. , 2004, Physical review letters.
[22] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[23] R. Cyburt. Primordial nucleosynthesis for the new cosmology: Determining uncertainties and examining concordance , 2004, astro-ph/0401091.
[24] R. Nichol,et al. The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.
[25] L. Amendola,et al. Coupled dark energy: Parameter constraints from N-body simulations , 2003, astro-ph/0309671.
[26] Matthew Colless,et al. The 2dF Galaxy Redshift Survey: Final data release , 2003, astro-ph/0306581.
[27] D. Markoff,et al. First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance , 2003 .
[28] L. Amendola,et al. Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe , 2003 .
[29] Luca AmendolaClaudia Quercellini. Tracking and coupled dark energy as seen by WMAP , 2003, astro-ph/0303228.
[30] M. Halpern,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.
[31] KamLAND-Zen Collaboration. First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.
[32] S. Kim,et al. Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.
[33] J. Carlstrom,et al. Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.
[34] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[35] Elizabeth Waldram,et al. First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.
[36] R. C. Allen,et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.
[37] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[38] The Macro Collaboration. Matter effects in upward-going muons and sterile neutrino oscillations , 2001, hep-ex/0106049.
[39] J. Carlstrom,et al. First Intrinsic Anisotropy Observations with the Cosmic Background Imager , 2000, astro-ph/0012211.
[40] S. Burles,et al. What is the big-bang-nucleosynthesis prediction for the baryon density and how reliable is it? , 2000, astro-ph/0008495.
[41] A. Melchiorri,et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.
[42] Jérôme Martin,et al. Robustness of quintessence , 1999, astro-ph/9912046.
[43] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[44] L. Amendola. Coupled Quintessence , 1999, astro-ph/9908023.
[45] Jérôme Martin,et al. Quintessence and supergravity , 1999, astro-ph/9905040.
[46] L. Amendola. Scaling solutions in general nonminimal coupling theories , 1999, astro-ph/9904120.
[47] E. al.,et al. The atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton-year exposure of Soudan 2. , 1999, hep-ex/9901024.
[48] J. Loveday. The Sloan Digital Sky Survey , 1998, astro-ph/9809179.
[49] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[50] H. Ford,et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.
[51] C. Wetterich. The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.
[52] L. Ho,et al. The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .
[53] Damour,et al. Nucleosynthesis constraints on an extended Jordan-Brans-Dicke theory. , 1991, Physical review. D, Particles and fields.
[54] Gibbons,et al. Dark matter, time-varying G, and a dilaton field. , 1990, Physical review letters.
[55] P. Peebles,et al. Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.
[56] S. Bonometto,et al. Microwave background anisotropies, large-scale peculiar velocity fields, and clustering evolution in a warm-hot dark matter cosmological model , 1985 .
[57] R. Scaramella,et al. Gravitational instability in an Omega(0) = 1, four-component universe , 1985 .
[58] S. Bonometto,et al. Fluctuation evolution in a two-component dark-matter model , 1985 .
[59] S. Bonometto,et al. Nature of dark matter and pancake mass , 1984 .
[60] J. Dunkley,et al. Five-Year Wilkinson Microwave Anisotropy Probe ( WMAP 1 ) Observations : Angular Power Spectra , 2008 .
[61] R. Ellis,et al. The Supernova Legacy Survey: measurement of Ωm, Ω∧ and w from the first year data set. Commentary , 2006 .
[62] A. Riess. TYPE IA SUPERNOVA DISCOVERIES AT Z STRICT INEQUALITY 1 FROM THE HUBBLE SPACE TELESCOPE: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION , 2004 .
[63] J. Kurfess,et al. Accepted for Publication in the Astrophysical Journal on the Evolution of the Dense Core Mass Function , 1998 .