Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?

Within the frame of cosmologies where Dark Energy (DE) is a self-interacting scalar field, we allow for a CDM-DE coupling and non-zero neutrino masses, simultaneously. In their 0-0 version, i.e. in the absence of coupling and neutrino mass, these cosmologies provide an excellent fit to WMAP, SNIa and deep galaxy sample spectra, at least as good as ΛCDM. When the new degrees of freedom are open, we find that CDM-DE coupling and significant neutrino masses (∼ 0.1 eV per ν species) are at least as likely as the 0-0 option and, in some cases, even statistically favoured. Results are obtained by using a Monte Carlo Markov Chain approach.

[1]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[2]  L. Colombo,et al.  Coupling between cold dark matter and dark energy from neutrino mass experiments , 2009, 0902.2737.

[3]  L. Colombo,et al.  Higher neutrino mass allowed if Cold Dark Matter and Dark Energy are coupled , 2008, 0810.0127.

[4]  L. Colombo,et al.  Higher neutrino mass allowed if DM and DE are coupled , 2008 .

[5]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[6]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[7]  C. Baccigalupi,et al.  Coupled and extended quintessence: Theoretical differences and structure formation , 2008, 0802.1086.

[8]  F. Atrio-Barandela,et al.  Dynamics of interacting quintessence models: Observational constraints , 2007, 0706.3860.

[9]  S. Bonometto,et al.  Limits on coupling between dark components , 2007, astro-ph/0703303.

[10]  G. J. Alner,et al.  Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. , 2006, Physical review letters.

[11]  L. Colombo,et al.  Constraints on quintessence using recent cosmological data , 2006, astro-ph/0607262.

[12]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[13]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[14]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[15]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[16]  N. A. Titov,et al.  KATRIN Design Report 2004 , 2005 .

[17]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[18]  J. Prieto,et al.  Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First 2 Years , 2004, 0811.4424.

[19]  G. Miele,et al.  Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields , 2004, astro-ph/0408076.

[20]  M. Decowski,et al.  Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. , 2004, Physical review letters.

[21]  T. V. Bullard,et al.  Measurement of the total active 8B solar neutrino flux at the Sudbury Neutrino Observatory with enhanced neutral current sensitivity. , 2004, Physical review letters.

[22]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[23]  R. Cyburt Primordial nucleosynthesis for the new cosmology: Determining uncertainties and examining concordance , 2004, astro-ph/0401091.

[24]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[25]  L. Amendola,et al.  Coupled dark energy: Parameter constraints from N-body simulations , 2003, astro-ph/0309671.

[26]  Matthew Colless,et al.  The 2dF Galaxy Redshift Survey: Final data release , 2003, astro-ph/0306581.

[27]  D. Markoff,et al.  First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance , 2003 .

[28]  L. Amendola,et al.  Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe , 2003 .

[29]  Luca AmendolaClaudia Quercellini Tracking and coupled dark energy as seen by WMAP , 2003, astro-ph/0303228.

[30]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[31]  KamLAND-Zen Collaboration First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.

[32]  S. Kim,et al.  Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.

[33]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[34]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[35]  Elizabeth Waldram,et al.  First results from the Very Small Array — III. The cosmic microwave background power spectrum , 2002, astro-ph/0205380.

[36]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[37]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[38]  The Macro Collaboration Matter effects in upward-going muons and sterile neutrino oscillations , 2001, hep-ex/0106049.

[39]  J. Carlstrom,et al.  First Intrinsic Anisotropy Observations with the Cosmic Background Imager , 2000, astro-ph/0012211.

[40]  S. Burles,et al.  What is the big-bang-nucleosynthesis prediction for the baryon density and how reliable is it? , 2000, astro-ph/0008495.

[41]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[42]  Jérôme Martin,et al.  Robustness of quintessence , 1999, astro-ph/9912046.

[43]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[44]  L. Amendola Coupled Quintessence , 1999, astro-ph/9908023.

[45]  Jérôme Martin,et al.  Quintessence and supergravity , 1999, astro-ph/9905040.

[46]  L. Amendola Scaling solutions in general nonminimal coupling theories , 1999, astro-ph/9904120.

[47]  E. al.,et al.  The atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton-year exposure of Soudan 2. , 1999, hep-ex/9901024.

[48]  J. Loveday The Sloan Digital Sky Survey , 1998, astro-ph/9809179.

[49]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[50]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[51]  C. Wetterich The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.

[52]  L. Ho,et al.  The subluminous spectroscopically peculiar type Ia supernova 1991bg in the elliptical galaxy NGC 4374 , 1992 .

[53]  Damour,et al.  Nucleosynthesis constraints on an extended Jordan-Brans-Dicke theory. , 1991, Physical review. D, Particles and fields.

[54]  Gibbons,et al.  Dark matter, time-varying G, and a dilaton field. , 1990, Physical review letters.

[55]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[56]  S. Bonometto,et al.  Microwave background anisotropies, large-scale peculiar velocity fields, and clustering evolution in a warm-hot dark matter cosmological model , 1985 .

[57]  R. Scaramella,et al.  Gravitational instability in an Omega(0) = 1, four-component universe , 1985 .

[58]  S. Bonometto,et al.  Fluctuation evolution in a two-component dark-matter model , 1985 .

[59]  S. Bonometto,et al.  Nature of dark matter and pancake mass , 1984 .

[60]  J. Dunkley,et al.  Five-Year Wilkinson Microwave Anisotropy Probe ( WMAP 1 ) Observations : Angular Power Spectra , 2008 .

[61]  R. Ellis,et al.  The Supernova Legacy Survey: measurement of Ωm, Ω∧ and w from the first year data set. Commentary , 2006 .

[62]  A. Riess TYPE IA SUPERNOVA DISCOVERIES AT Z STRICT INEQUALITY 1 FROM THE HUBBLE SPACE TELESCOPE: EVIDENCE FOR PAST DECELERATION AND CONSTRAINTS ON DARK ENERGY EVOLUTION , 2004 .

[63]  J. Kurfess,et al.  Accepted for Publication in the Astrophysical Journal on the Evolution of the Dense Core Mass Function , 1998 .