Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal

A self-consistent electrical-thermal-optical-gain modeling of threshold characteristics of an InP-based 1300 nm AlInGaAs photonic-crystal vertical-cavity surface-emitting diode laser is presented. It is shown that low threshold characteristics and strong transverse-mode discrimination can be simultaneously achieved for optimized photonic crystal structure and current aperture. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[2]  Judy M Rorison,et al.  Theoretical investigation of transverse optical modes in photonic-crystal waveguides imbedded into proton-implanted and oxide-confined vertical-cavity surface-emitting lasers , 2005 .

[3]  K. Panajotov,et al.  PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures. , 2005, Optics express.

[4]  D.A. Buell,et al.  Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs , 2006, IEEE Journal of Quantum Electronics.

[5]  Ian H. White,et al.  1.3-/spl mu/m quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: a theoretical study , 2002 .

[6]  Robert P. Sarzała,et al.  Separate-confinement-oxidation vertical-cavity surface-emitting laser structure , 2006 .

[7]  B. Garrett,et al.  Characterization of the temperature sensitivity of gain and recombination mechanisms in 1.3-/spl mu/m AlGaInAs MQW lasers , 2005, IEEE Journal of Quantum Electronics.

[8]  Hugo Thienpont,et al.  Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL , 2008 .

[9]  Seoung-Hwan Park,et al.  Theory and experiment of In/sub 1-x/Ga/sub x/As/sub y/P/sub 1-y/ and In/sub 1-x-y/Ga/sub x/Al/sub y/As long-wavelength strained quantum-well lasers , 1999 .

[10]  Joachim Piprek,et al.  What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? , 2002 .

[11]  Kent D. Choquette,et al.  In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers , 2006 .

[12]  Hongxing Jiang,et al.  Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes , 2004 .

[13]  J. Merz,et al.  Rapid thermal alloyed ohmic contact on inp , 1987 .

[14]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[15]  Jen-Inn Chyi,et al.  Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers , 1996 .

[16]  Photonic crystal microcavity lasers , 2007 .

[17]  K. Asakawa,et al.  Precise control of dry etching for nanometer scale air-hole arrays in two-dimensional GaAs/AlGaAs photonic crystal slabs , 2007 .

[18]  Sung-Bock Kim,et al.  Characteristics of electrically driven two-dimensional photonic crystal lasers , 2005 .

[19]  H. J. Unold,et al.  Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals , 2003 .

[20]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide-GaAs distributed Bragg reflectors , 1995, IEEE Photonics Technology Letters.

[21]  L. Coldren,et al.  Optical Design of InAlGaAs Low-Loss Tunnel-Junction Apertures for Long-Wavelength Vertical-Cavity Lasers , 2006, IEEE Journal of Quantum Electronics.

[22]  K. Panajotov,et al.  Single mode condition and modes discrimination in photonic-crystal 1.3 mum AlInGaAs/InP VCSEL. , 2007, Optics express.

[23]  Mikael Östling,et al.  Carrier transport through a dry-etched InP-based two-dimensional photonic crystal , 2007 .

[24]  A. W. Jackson,et al.  High-power 1320-nm wafer-bonded VCSELs with tunnel junctions , 2003, IEEE Photonics Technology Letters.

[25]  Anand Gopinath,et al.  Polarization-insensitive quantum-well semiconductor optical amplifiers , 2002 .

[26]  K. Panajotov,et al.  Optimal Parameters of Photonic-Crystal Vertical-Cavity Surface-Emitting Diode Lasers , 2007, Journal of Lightwave Technology.

[27]  Yong-Hee Lee,et al.  Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers , 2003 .

[28]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[29]  Thomas F. Krauss,et al.  High-aspect-ratio chemically assisted ion-beam etching for photonic crystals using a high beam voltage-current ratio , 2004 .

[30]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[31]  P. Leisher,et al.  Single-mode 1.3-/spl mu/m photonic crystal vertical-cavity surface-emitting laser , 2006, IEEE Photonics Technology Letters.

[32]  Kent D. Choquette,et al.  Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers , 2003 .

[33]  Kent D. Choquette,et al.  Single fundamental mode photonic crystal vertical cavity laser with improved output power , 2005 .

[34]  Gregory Belenky,et al.  Novel design of AlGaInAs-InP lasers operating at 1.3 /spl mu/m , 1995 .