Classification and Prediction of Erythemato-Squamous Diseases Through Tensor-Based Learning

[1]  K. S. Ravichandran,et al.  An efficient approach to an automatic detection of erythemato-squamous diseases , 2014, Neural Computing and Applications.

[2]  K. S. Ravichandr,et al.  Design of Automatic Detection of Erythemato-squamous Diseases Through Threshold-based ABC-FELM Algorithm , 2013 .

[3]  Weixin Xie,et al.  Novel Hybrid Feature Selection Algorithms for Diagnosing Erythemato-Squamous Diseases , 2012, HIS.

[4]  Arif Gülten,et al.  A Robust Multi-Class Feature Selection Strategy Based on Rotation Forest Ensemble Algorithm for Diagnosis of Erythemato-Squamous Diseases , 2012, Journal of Medical Systems.

[5]  P. Luukka A New Nonlinear Fuzzy Robust PCA Algorithm and Similarity Classifier in Classification of Medical Data Sets , 2011 .

[6]  Francesco Gagliardi,et al.  Instance-based classifiers applied to medical databases: Diagnosis and knowledge extraction , 2011, Artif. Intell. Medicine.

[7]  A. Cichocki,et al.  Damped Gauss-Newton algorithm for nonnegative Tucker decomposition , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[8]  Andrzej Cichocki,et al.  Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification , 2011, Neurocomputing.

[9]  Juanying Xie,et al.  Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases , 2011, Expert Syst. Appl..

[10]  Pasi Luukka,et al.  Feature selection using fuzzy entropy measures with similarity classifier , 2011, Expert Syst. Appl..

[11]  Mohamad Saraee,et al.  A Survey on Utilization of Data Mining Approaches for Dermatological (Skin) Diseases Prediction , 2011 .

[12]  Ludmil Mikhailov,et al.  Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases , 2010, Artif. Intell. Medicine.

[13]  Weixin Xie,et al.  A Novel Hybrid Feature Selection Method Based on IFSFFS and SVM for the Diagnosis of Erythemato-Squamous Diseases , 2010, WAPA.

[14]  Bayram Cetisli,et al.  The effect of linguistic hedges on feature selection: Part 2 , 2010, Expert Syst. Appl..

[15]  M. Cevdet Ince,et al.  A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases , 2009, Expert Syst. Appl..

[16]  L. G. Kabari,et al.  Diagnosing skin diseases using an artificial neural network , 2009, 2009 2nd International Conference on Adaptive Science & Technology (ICAST).

[17]  Kenneth Revett,et al.  Evaluation of the Feature Space of an Erythematosquamous Dataset Using Rough Sets , 2009 .

[18]  Latha Parthiban,et al.  An intelligent agent for detection of erythemato- squamous diseases using Co-active Neuro-Fuzzy Inference System and genetic algorithm , 2009, 2009 International Conference on Intelligent Agent & Multi-Agent Systems.

[19]  Lei Liu,et al.  Feature selection with dynamic mutual information , 2009, Pattern Recognit..

[20]  Kemal Polat,et al.  A novel hybrid intelligent method based on C4.5 decision tree classifier and one-against-all approach for multi-class classification problems , 2009, Expert Syst. Appl..

[21]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Pasi Luukka,et al.  Similarity classifier using similarity measure derived from Yu's norms in classification of medical data sets , 2007, Comput. Biol. Medicine.

[23]  Michel Verleysen,et al.  Resampling methods for parameter-free and robust feature selection with mutual information , 2007, Neurocomputing.

[24]  Kemal Polat,et al.  The effect to diagnostic accuracy of decision tree classifier of fuzzy and k-NN based weighted pre-processing methods to diagnosis of erythemato-squamous diseases , 2006, Digit. Signal Process..

[25]  Pasi Luukka,et al.  Similarity classifier with generalized mean applied to medical data , 2006, Comput. Biol. Medicine.

[26]  Loris Nanni,et al.  An ensemble of classifiers for the diagnosis of erythemato-squamous diseases , 2006, Neurocomputing.

[27]  Xuelong Li,et al.  Supervised tensor learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[28]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[29]  H. Altay Güvenir,et al.  Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals , 1998, Artif. Intell. Medicine.

[30]  Chuen-Tsai Sun,et al.  A neuro-fuzzy classifier and its applications , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[31]  M. F. Møller A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning , 1990 .

[32]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[33]  Elif Derya Übeyli Combined neural networks for diagnosis of erythemato-squamous diseases , 2009, Expert Syst. Appl..

[34]  Elif Derya Übeyli Multiclass support vector machines for diagnosis of erythemato-squamous diseases , 2008, Expert Syst. Appl..

[35]  Kyriacos Chrysostomou,et al.  The role of classifiers in feature selection : number vs nature , 2008 .

[36]  Chih-Jen Lin,et al.  Feature Extraction, Foundations and Applications , 2006 .

[37]  N. A. Diamantidis,et al.  Unsupervised stratification of cross-validation for accuracy estimation , 2000, Artif. Intell..

[38]  H. A. Güvenira,et al.  An expert system for the differential diagnosis of erythemato-squamous diseases , 1999 .

[39]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.