Clean energy investment scenarios using the Bayesian network

Clean energy investment decisions are getting more difficult to make due to public reactions. In order to support the policies in the field, analysis of the positive conditions is needed. This research aims to construct the positive scenarios for nuclear energy and renewable energy investments in the state of Oregon, USA. The Bayesian network technique will be used to create the scenarios. Oregon has a wide range of renewable energies; hence, investment is becoming more complex. Criteria affecting the decisions are taken from the literature, but were reviewed with energy authorities in Oregon in order to define the interactions.

[1]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[2]  Yifeng Zeng,et al.  Refinement of Bayesian Network Structures upon New Data , 2008, GrC.

[3]  Beatrice Lazzerini,et al.  Risk Analysis Using Extended Fuzzy Cognitive Maps , 2010, 2010 International Conference on Intelligent Computing and Cognitive Informatics.

[4]  Ying Huang,et al.  A Quantum Cognitive Map Model , 2009, 2009 Fifth International Conference on Natural Computation.

[5]  James J. Spivey,et al.  Catalysis in the development of clean energy technologies , 2005 .

[6]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[7]  Peng Yan,et al.  The Application of Bayesian Network in the Performance Evaluation and Decision-making System , 2008, 2008 IEEE International Conference on Networking, Sensing and Control.

[8]  Shu-Chun Ho,et al.  Construct a Sequential Decision-Making Model: A Dynamic Bayesian Network Perspective , 2011, 2011 44th Hawaii International Conference on System Sciences.

[9]  Van Buskirk,et al.  Analysis of long-range clean energy investment scenarios for Eritrea, East Africa , 2006 .

[10]  Richard E. Neapolitan Foundations of Bayesian Networks , 2009 .

[11]  Tugrul U. Daim,et al.  Developing Oregon's renewable energy portfolio using fuzzy goal programming model , 2010, Comput. Ind. Eng..

[12]  Timothy R. Anderson,et al.  Exploring the impact of technology development and adoption for sustainable hydroelectric power and , 2010 .

[13]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[14]  Eric N. Mortensen,et al.  Real-Time Semi-Automatic Segmentation Using a Bayesian Network , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Weisheng Wang,et al.  Wind Energy in China , 2011, IEEE Power and Energy Magazine.

[16]  Paolo Trucco,et al.  A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation , 2008, Reliab. Eng. Syst. Saf..

[17]  Liu Zhi,et al.  Causation, Bayesian Networks, and Cognitive Maps , 2001 .

[18]  C. Eden,et al.  The analysis of cause maps , 1992 .

[19]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[20]  Prakash P. Shenoy,et al.  A causal mapping approach to constructing Bayesian networks , 2004, Decis. Support Syst..

[21]  Stéphane Bonnevay,et al.  Learning Bayesian network structures by estimation of distribution algorithms: An experimental analysis , 2007, ICDIM.

[22]  Colin Eden,et al.  Analyzing cognitive maps to help structure issues or problems , 2004, Eur. J. Oper. Res..

[23]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1998, Learning in Graphical Models.

[24]  Gülgün Kayakutlu,et al.  Scenario analysis using Bayesian networks: A case study in energy sector , 2010, Knowl. Based Syst..

[25]  Tugrul U. Daim,et al.  Assessing Renewable Energy Portfolio Futures with Multiple Perspectives: The Case of the Northwest US , 2010 .

[26]  T. Gregory,et al.  Learning Bayesian network structures by estimation of distribution algorithms: An experimental analysis , 2007, 2007 2nd International Conference on Digital Information Management.

[27]  Valerie Belton,et al.  Causal maps and the evaluation of decision options—a review , 2006, J. Oper. Res. Soc..

[28]  V. Dovi',et al.  Cleaner energy for sustainable future , 2009 .

[29]  Petros A. Pilavachi,et al.  Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process , 2008 .

[30]  Xia Chang-liang,et al.  Wind energy in China: Current scenario and future perspectives , 2009 .

[31]  Y. Mulugetta,et al.  Power sector scenarios for Thailand: An exploratory analysis 2002-2022 , 2007 .

[32]  Volker Krey,et al.  Compromises in energy policy--Using fuzzy optimization in an energy systems model , 2008 .

[33]  Jonathan M Cullen,et al.  Reducing energy demand: what are the practical limits? , 2011, Environmental science & technology.

[34]  Donald A. Hanson,et al.  An integrated analysis of policies that increase investments in advanced energy-efficient/low-carbon technologies , 2004 .

[35]  B. Keane Marketing Clean Energy in the United States , 2007, 2007 International Conference on Clean Electrical Power.

[36]  B Wieczorek,et al.  The federal ministry for the environment, nature conservation and nuclear safety. , 1993, Schriftenreihe des Vereins fur Wasser-, Boden- und Lufthygiene.

[37]  Tugrul U. Daim,et al.  Technology assessment for clean energy technologies: The case of the Pacific Northwest , 2009 .

[38]  Zhi-Qiang Liu Causation , Bayesian Networks , and Cognitive Maps ∗ , 2005 .

[39]  Füsun Ülengin,et al.  A Bayesian causal map for inflation analysis: The case of Turkey , 2006, Eur. J. Oper. Res..

[40]  Jane Powell,et al.  Reducing energy demand , 2015 .

[41]  Prakash P. Shenoy,et al.  A Bayesian network approach to making inferences in causal maps , 2001, Eur. J. Oper. Res..

[42]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[43]  Keng Siau,et al.  Improving the quality of conceptual modeling using cognitive mapping techniques , 2005, Data Knowl. Eng..

[44]  Ethem Alpaydin,et al.  Introduction to Machine Learning (Adaptive Computation and Machine Learning) , 2004 .

[45]  Tugrul U. Daim,et al.  Storage Technology Portfolio for Integrating Wind Power Generation , 2012 .