Spectral computation of low probability tails for the homogeneous Boltzmann equation

We apply the spectral-Lagrangian method of Gamba and Tharkabhushanam for solving the homogeneous Boltzmann equation to compute the low probability tails of the velocity distribution function, f , of a particle species. This method is based on a truncation, Q(f, f), of the Boltzmann collision operator, Q(f, f), whose Fourier transform is given by a weighted convolution. The truncated collision operator models the situation in which two colliding particles ignore each other if their relative speed exceeds a threshold, gtr. We demonstrate that the choice of truncation parameter plays a critical role in the accuracy of the numerical computation of Q. Significantly, if gtr is too large, then accurate numerical computation of the weighted convolution integral is not feasible, since the decay rate and degree of oscillation of the convolution weighting function both increase as gtr increases. We derive an upper bound on the pointwise error between Q and Q, assuming that both operators are computed exactly. This bound provides some additional theoretical justification for the spectral-Lagrangian method, and can be used to guide the choice of gtr in numerical computations. We then demonstrate how to choose gtr and the numerical discretization parameters so that the computation of the truncated collision operator is a good approximation to Q in the low probability tails. Finally, for several different initial conditions, ∗Corresponding author Email addresses: zweck@utdallas.edu (John Zweck), yanpingchen123@yahoo.com (Yanping Chen), goeckner@utdallas.edu (Matthew J. Goeckner), yshen@ku.edu (Yannan Shen) Preprint submitted to Applied Numerical Mathematics January 6, 2021 we demonstrate the feasibility of accurately computing the time evolution of the velocity pdf down to probability density levels ranging from 10 to 10.

[1]  W. Wagner,et al.  Stochastic Numerics for the Boltzmann Equation , 2005 .

[2]  A. Bobylev Exact solutions of the Boltzmann equation , 1975 .

[3]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[4]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[5]  Jingwei Hu,et al.  A Fast Conservative Spectral Solver For The Nonlinear Boltzmann Collision Operator , 2014 .

[6]  Irene M. Gamba,et al.  SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION * , 2010 .

[7]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .

[8]  Lexing Ying,et al.  An Entropic Fourier Method for the Boltzmann Equation , 2017, SIAM J. Sci. Comput..

[9]  R. Hiptmair,et al.  Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation , 2015 .

[10]  Jeffrey Haack A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation , 2013 .

[11]  Sergej Rjasanow,et al.  Direct simulation of the uniformly heated granular boltzmann equation, , 2005, Math. Comput. Model..

[12]  J. Allen On the applicability of the Druyvesteyn method of measuring electron energy distributions , 1978 .

[13]  Sergej Rjasanow,et al.  Galerkin-Petrov approach for the Boltzmann equation , 2017, J. Comput. Phys..

[14]  W. Cheney,et al.  Numerical analysis: mathematics of scientific computing (2nd ed) , 1991 .

[15]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[16]  Irene M. Gamba,et al.  High performance computing with a conservative spectral Boltzmann solver , 2012, 1211.0540.

[17]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[18]  W. Wagner A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation , 1992 .

[19]  M. Kushner,et al.  Solving the spatially dependent Boltzmann’s equation for the electron‐velocity distribution using flux corrected transport , 1989 .

[20]  D. Moseev,et al.  Recent progress in fast-ion diagnostics for magnetically confined plasmas , 2018, Reviews of Modern Plasma Physics.

[21]  L. C. Pitchford,et al.  A Numerical Solution of the Boltzmann Equation , 1983 .

[22]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[23]  Irene M. Gamba,et al.  A spectral-Lagrangian Boltzmann solver for a multi-energy level gas , 2013, J. Comput. Phys..

[24]  Jingwei Hu,et al.  A Fast Spectral Method for the Boltzmann Collision Operator with General Collision Kernels , 2016, SIAM J. Sci. Comput..

[25]  T. Wu,et al.  Formation of Maxwellian Tails , 1976 .

[26]  W. Tan Langmuir probe measurement of electron temperature in a Druyvesteyn electron plasma , 1973 .

[27]  A. Bobylev,et al.  Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules , 2016 .

[28]  F. Honary,et al.  Simulation of high energy tail of electron distribution function , 2004 .

[29]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[30]  J. Duistermaat,et al.  Distributions: Theory and Applications , 2010 .

[31]  C. Villani,et al.  Upper Maxwellian Bounds for the Spatially Homogeneous Boltzmann Equation , 2007 .

[32]  J. Goree,et al.  Electron velocity distribution functions in a sputtering magnetron discharge for the E×B direction , 1998 .

[33]  D. Coumou,et al.  Driving frequency fluctuations in pulsed capacitively coupled plasmas , 2017 .

[34]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[35]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[36]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[37]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[38]  Irene M. Gamba,et al.  A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit , 2013, J. Comput. Phys..

[39]  Irene M. Gamba,et al.  Convergence and Error Estimates for the Lagrangian-Based Conservative Spectral Method for Boltzmann Equations , 2016, SIAM J. Numer. Anal..

[40]  Kenichi Nanbu,et al.  Direct Simulation Scheme Derived from the Boltzmann Equation. II. Multicomponent Gas Mixtures , 1980 .