A multi–methodological approach to reconstruct the configuration of a travertine fissure ridge system: The case of the Cukor quarry (Süttő, Gerecse Hills, Hungary)

[1]  R. Folk Practical petrographic classification of limestones , 1959 .

[2]  R. J. Dunham Classification of Carbonate Rocks According to Depositional Textures , 1962 .

[3]  Y. Bottinga Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water , 1968 .

[4]  P. Choquette,et al.  Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates , 1970 .

[5]  M. Pécsi Geomorphological regions of Hungary , 1970 .

[6]  J. Hoefs Stable Isotope Geochemistry , 1973 .

[7]  R. Harmon,et al.  Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters , 1974 .

[8]  G. Brass The variation of the marine 87Sr86Sr ratio during Phanerozonic time: interpretation using a flux model , 1976 .

[9]  M. R. Johnson Structural geology , 1977, Nature.

[10]  P. Schnegg,et al.  An analytic one-dimensional magnetotelluric inversion scheme , 1981 .

[11]  R. Folk,et al.  Travertines: Depositional Morphology and the Bacterially Constructed Constituents , 1984 .

[12]  H. Inoue,et al.  Carbon isotopic fractionation during the CO2 exchange process between air and sea water under equilibrium and kinetic conditions , 1985 .

[13]  J. Kronfeld,et al.  Paleoclimatic Implications of U-Series Dates for Lake Sediments and Travertines in the Arava Rift Valley, Israel , 1985, Quaternary Research.

[14]  G. Palacky 3. Resistivity Characteristics of Geologic Targets , 1988 .

[15]  L. Royden,et al.  The Pannonian Basin : a study in basin evolution , 1988 .

[16]  Gyula Scheuer A Gerecse- és a Budai-hegység édesvizi mészkőösszletei , 1988 .

[17]  H. M. Pedley Classification and environmental models of cool freshwater tufas , 1990 .

[18]  R. Riding,et al.  Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy , 1992 .

[19]  E. Altunel,et al.  Active Fissuring and Faulting in Quaternary Travertines at Pamukkale, Western Turkey , 1993 .

[20]  H. Rollinson Using Geochemical Data: Evaluation, Presentation, Interpretation , 1993 .

[21]  F. Horváth Towards a mechanical model for the formation of the Pannonian basin , 1993 .

[22]  E. Altunel,et al.  Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey , 1993 .

[23]  R. Riding,et al.  Stable isotopic compositions of Recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls , 1993 .

[24]  R. Riding,et al.  Origin and diagenesis of Quaternary travertine shrub fabrics, Rapolano Terme, central Italy , 1994 .

[25]  P. Turberg,et al.  Hydrogeological investigation of porous environments by radio magnetotelluric-resistivity (RMT-R 12–240 kHz) , 1994 .

[26]  B. Marty,et al.  Origin of carbon in fumarolic gas from island arcs , 1995 .

[27]  S. Cloetingh,et al.  Stress-induced late stage subsidence anomalies in the Pannonian Basin , 1996 .

[28]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[29]  T. Rose,et al.  Radiocarbon in Hydrologic Systems Containing Dissolved Magmatic Carbon Dioxide , 1996, Science.

[30]  G. Tímár,et al.  Tertiary brittle faulting and stress field evolution in the Gerecse Mountains, northern Hungary , 1996 .

[31]  J. Karson,et al.  Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction , 1997 .

[32]  R. Riding,et al.  The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe , 1997 .

[33]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[34]  R. Riding,et al.  Hot‐spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy , 1998 .

[35]  P. Hancock,et al.  Travitonics: using travertines in active fault studies , 1999 .

[36]  G. Bada,et al.  Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of palaeostress data , 1999, Geological Society, London, Special Publications.

[37]  Z. Sharp,et al.  The effect of thermal decarbonation on stable isotope compositions of carbonates , 2001 .

[38]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[39]  S. B. Moran,et al.  Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry , 2002 .

[40]  M. Murrell,et al.  Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications , 2002 .

[41]  C. Spötl,et al.  Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. , 2003, Rapid communications in mass spectrometry : RCM.

[42]  D. Richards,et al.  Uranium-series Chronology and Environmental Applications of Speleothems , 2003 .

[43]  A. Minissale Origin, transport and discharge of CO2 in central Italy , 2004 .

[44]  M. Leng,et al.  Palaeoclimate interpretation of stable isotope data from lake sediment archives , 2004 .

[45]  E. Altunel,et al.  Determination of horizontal extension from fissure-ridge travertines: a case study from the Denizli Basin, southwestern Turkey , 2005 .

[46]  G. Bada,et al.  Quantification of Quaternary vertical movements in the central Pannonian Basin: A review of chronologic data along the Danube River, Hungary , 2005 .

[47]  R. Drysdale,et al.  U–Pb geochronology of speleothems by MC-ICPMS , 2006 .

[48]  D. Hilton,et al.  Dissected hydrologic system at the Grand Canyon: Interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine , 2006 .

[49]  B. Kieffer,et al.  High‐precision isotopic characterization of USGS reference materials by TIMS and MC‐ICP‐MS , 2006 .

[50]  M. Geurts,et al.  Morphogenèse des barrages de travertin de Coal River Springs, sud-est du Territoire du Yukon , 2007 .

[51]  D. Weatherley,et al.  U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures , 2007 .

[52]  T. Coplen Calibration of the calcite–water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory , 2007 .

[53]  A. Minissale,et al.  USE OF QUATERNARY TRAVERTINES OF CENTRAL-SOUTHERN ITALY AS ARCHIVES OF PALEOCLIMATE, PALEOHYDROLOGY AND NEOTECTONICS , 2008 .

[54]  M. Tóth,et al.  Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: Depositional facies and non-equilibrium fractionation , 2008 .

[55]  Jian-xin Zhao,et al.  Hydrothermal CO2 degassing in seismically active zones during the late Quaternary , 2009 .

[56]  S. Kele INVESTIGATIONS ON FRESHWATER LIMESTONES FROM THE CARPATHIAN- BASIN: PALAEOCLIMATOLOGICAL AND SEDIMENTOLOGICAL STUDIES , 2009 .

[57]  A. Brogi,et al.  Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy) , 2009 .

[58]  E. Jeandel,et al.  Lessons learned from natural and industrial analogues for storage of carbon dioxide , 2009 .

[59]  M. Frechen,et al.  Uranium-series dating of travertine from Süttő: Implications for reconstruction of environmental change in Hungary , 2010 .

[60]  W. Brand,et al.  Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report) , 2010 .

[61]  M. Frechen,et al.  Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, high resolution grain size, and magnetic susceptibility data , 2011 .

[62]  D. Schrag,et al.  Defining an absolute reference frame for 'clumped' isotope studies of CO 2 , 2011 .

[63]  S. Kele,et al.  Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation , 2011 .

[64]  A. Colman,et al.  Pressure baseline correction and high-precision CO2 clumped-isotope (∆47) measurements in bellows and micro-volume modes. , 2012, Rapid communications in mass spectrometry : RCM.

[65]  M. Giudici,et al.  Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the quaternary Po alluvial plain (Italy) , 2012, International Journal of Earth Sciences.

[66]  M. Giudici,et al.  Imaging of subsurface alluvial stratigraphy: an electro-stratigraphic traverse across the Po plain in Lombardy , 2012 .

[67]  Haoming Yan,et al.  Equilibrium vs. kinetic fractionation of oxygen isotopes in two low-temperature travertine-depositing systems with differing hydrodynamic conditions at Baishuitai, Yunnan, SW China , 2012 .

[68]  R. Edwards,et al.  High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols , 2012 .

[69]  R. Edwards,et al.  Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry , 2013 .

[70]  S. Kovács,et al.  Geology of Hungary , 2013 .

[71]  A. Foubert,et al.  Fracture networks and strike–slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey , 2013 .

[72]  Oliver Kuras,et al.  Recent developments in the direct-current geoelectrical imaging method , 2013 .

[73]  R. Deiana,et al.  A multidisciplinary approach to understanding carbonate deposition under tectonically controlled hydrothermal circulation: A case study from a recent travertine mound in the Euganean hydrothermal system, northern Italy , 2014 .

[74]  H. Hercman,et al.  Earthquake‐affected development of a travertine ridge , 2014 .

[75]  E. Capezzuoli,et al.  Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems , 2014 .

[76]  A. Brogi,et al.  Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: the Çukurbağ fissure-ridge (Pamukkale, Turkey) , 2014, Journal of the Geological Society.

[77]  Z. Wéber,et al.  Source Properties of the 29 January 2011 ML 4.5 Oroszlány (Hungary) Mainshock and Its Aftershocks , 2014 .

[78]  A. Brogi,et al.  Earthquake impact on fissure-ridge type travertine deposition , 2014, Geological Magazine.

[79]  E. Capezzuoli,et al.  Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art , 2014 .

[80]  M. Picozzi,et al.  Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication , 2014 .

[81]  E. Horváth,et al.  Dating of a Last Glacial loess sequence by relative geomagnetic palaeointensity: A case study from the Middle Danube Basin (Süttő, Hungary) , 2014 .

[82]  Naomi S. Altman,et al.  Points of Significance: Visualizing samples with box plots , 2014, Nature Methods.

[83]  P. Pazonyi,et al.  Pleistocene vertebrate faunas of the Süttő Travertine Complex (Hungary) , 2014 .

[84]  G. Della Porta Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature , 2015 .

[85]  Á. Tóth,et al.  Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region , 2015, Hydrogeology Journal.

[86]  C. Snoeck,et al.  Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. , 2015, Rapid communications in mass spectrometry : RCM.

[87]  A. Brogi,et al.  An overview on the characteristics of geothermal carbonate reservoirs in southern Tuscany , 2015 .

[88]  M. Ziegler,et al.  Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95 °C temperature range , 2015 .

[89]  J. Soete,et al.  Sedimentology, three‐dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south‐west Turkey) , 2015 .

[90]  G. Porta Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature , 2015 .

[91]  P. Ronchi,et al.  Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy , 2015 .

[92]  édesvízi mészkőszelvények,et al.  Magnetostratígraphic correlation of Quaternary travertine sequences in NE Transdanubia , 2015 .

[93]  A. Foubert,et al.  Acoustic properties in travertines and their relation to porosity and pore types , 2015 .

[94]  A. Billi,et al.  Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: Insights on Tyrrhenian margin neotectonics , 2016 .

[95]  G. Molnár,et al.  Tectonic and climatic control on terrace formation: Coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe , 2016 .

[96]  Z. Wéber Probabilistic waveform inversion for 22 earthquake moment tensors in Hungary: new constraints on the tectonic stress pattern inside the Pannonian basin , 2016 .

[97]  A. Schauer,et al.  Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry , 2016 .

[98]  G. Molnár,et al.  Spatially and temporally varying Quaternary uplift rates of the Gerecse Hills, Northern Pannonian Basin, using dated geomorphological horizons in the Danube valley , 2016 .

[99]  A. Brogi,et al.  Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey) , 2016 .

[100]  A. Billi,et al.  Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy: Estimate of CO2 leakage , 2016 .

[101]  A. Schauer,et al.  Choice of 17 O correction affects clumped isotope (Δ47 ) values of CO2 measured with mass spectrometry. , 2016, Rapid communications in mass spectrometry : RCM.

[102]  G. Camoin,et al.  Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers , 2016 .

[103]  A. Brogi,et al.  Comment on “First records of syn-diagenetic non-tectonic folding in Quaternary thermogene travertines caused by hydrothermal incremental veining” by Billi et al. Tectonophysics 700–701 (2017) 60–79 , 2017 .

[104]  A. Foubert,et al.  What do we really know about early diagenesis of non-marine carbonates? , 2017 .

[105]  A. Schauer,et al.  Toward a universal carbonate clumped isotope calibration: Diverse synthesis and preparatory methods suggest a single temperature relationship , 2017 .

[106]  J. Soete,et al.  Geobody architecture, genesis and petrophysical characteristics of the Budakalász travertines, Buda Hills (Hungary) , 2017 .

[107]  P. Deschamps,et al.  Geochemical transect through a travertine mount: A detailed record of CO 2 -enriched fluid leakage from Late Pleistocene to present-day – Little Grand Wash fault (Utah, USA) , 2017 .

[108]  A. Brogi,et al.  Key travertine tectofacies for neotectonics and palaeoseismicity reconstruction: effects of hydrothermal overpressured fluid injection , 2017, Journal of the Geological Society.

[109]  R. Swennen,et al.  Geobody architecture of continental carbonates: “Gazda” travertine quarry (Süttő, Gerecse Hills, Hungary) , 2017 .

[110]  A. Brogi,et al.  Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey) , 2018 .

[111]  G. Csillag,et al.  Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin) , 2018, Quaternary Geochronology.

[112]  K. Bargar Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming , 2018 .

[113]  Á. Török THE ANATOMY OF A PLEISTOCENE TRAVERTINE COMPLEX SEDIMENTOLOGICAL, DIAGENETIC AND RESERVOIR STUDIES ON THE SÜTTŐ TRAVERTINE SYSTEM (GERECSE HILLS, HUNGARY) , 2018 .

[114]  P. Muchez,et al.  Substrate geology controlling different morphology, sedimentology, diagenesis and geochemistry of adjacent travertine bodies: A case study from the Sanandaj-Sirjan zone (western Iran) , 2019, Sedimentary Geology.

[115]  J. Soete,et al.  Elemental geochemistry to complement stable isotope data of fossil travertine: Importance of digestion method and statistics , 2019, Sedimentary Geology.