Evaluating Pan and Zoom Timelines and Sliders

Pan and zoom timelines and sliders help us navigate large time series data. However, designing efficient interactions can be difficult. We study pan and zoom methods via crowd-sourced experiments on mobile and computer devices, asking which designs and interactions provide faster target acquisition. We find that visual context should be limited for low-distance navigation, but added for far-distance navigation; that timelines should be oriented along the longer axis, especially on mobile; and that, as compared to default techniques, double click, hold, and rub zoom appear to scale worse with task difficulty, whereas brush and especially ortho zoom seem to scale better. Software and data used in this research are available as open source.

[1]  Ken Hinckley,et al.  Sensor synaesthesia: touch in motion, and motion in touch , 2011, CHI.

[2]  Raimund Dachselt,et al.  Pinch-drag-flick vs. spatial input: rethinking zoom & pan on mobile displays , 2014, CHI.

[3]  Olivier Chapuis,et al.  Mid-air pan-and-zoom on wall-sized displays , 2011, CHI.

[4]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[5]  Chris Harrison,et al.  Lean and zoom: proximity-aware user interface and content magnification , 2008, CHI.

[6]  D. Rosenberg Cartographies of Time: A History of the Timeline , 2010 .

[7]  Niklas Elmqvist,et al.  GravNav: using a gravity model for multi-scale navigation , 2012, AVI.

[8]  Eric Lecolinet,et al.  Clutch-free panning and integrated pan-zoom control on touch-sensitive surfaces: the cyclostar approach , 2010, CHI.

[9]  Jarke J. van Wijk,et al.  Smooth and efficient zooming and panning , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[10]  Bongshin Lee,et al.  Visualizing Ranges over Time on Mobile Phones: A Task-Based Crowdsourced Evaluation , 2019, IEEE Transactions on Visualization and Computer Graphics.

[11]  Jon Froehlich,et al.  Differences in Crowdsourced vs. Lab-based Mobile and Desktop Input Performance Data , 2017, CHI.

[12]  Katharina Reinecke,et al.  Accurate measurements of pointing performance from in situ observations , 2012, CHI.

[13]  George W. Furnas,et al.  Critical zones in desert fog: aids to multiscale navigation , 1998, UIST '98.

[14]  Takeo Igarashi,et al.  Speed-dependent automatic zooming for browsing large documents , 2000, UIST '00.

[15]  I. MacKenzie,et al.  A note on the information-theoretic basis of Fitts' law. , 1989, Journal of motor behavior.

[16]  MacKenzie Is A Note on the Information-Theoretic Basis for Fitts’ Law , 1989 .

[17]  Raimund Dachselt,et al.  TimeZoom: a flexible detail and context timeline , 2006, CHI EA '06.

[18]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[19]  Ben Shneiderman,et al.  The alphaslider: a compact and rapid selector , 1994, CHI Conference Companion.

[20]  Michael F. Cohen,et al.  Looking at you: fused gyro and face tracking for viewing large imagery on mobile devices , 2012, CHI.

[21]  Jean-Daniel Fekete,et al.  OrthoZoom scroller: 1D multi-scale navigation , 2006, CHI.

[22]  Benjamin B. Bederson,et al.  Space-scale diagrams: understanding multiscale interfaces , 1995, CHI '95.

[23]  Andy Cockburn,et al.  Touch scrolling transfer functions , 2013, UIST.

[24]  Kasper Hornbæk Navigation Patterns and Usability of Zoomable User Interfaces with and without an Overview , 2003 .

[25]  Yves Guiard,et al.  Target acquisition in multiscale electronic worlds , 2004, Int. J. Hum. Comput. Stud..

[26]  Emmanuel Barillot,et al.  Context and interaction in zoomable user interfaces , 2000, AVI '00.

[27]  Steven K. Feiner,et al.  Rubbing and tapping for precise and rapid selection on touch-screen displays , 2008, CHI.

[28]  James D. Hollan,et al.  Pad++: a zooming graphical interface for exploring alternate interface physics , 1994, UIST '94.

[29]  Ken Perlin,et al.  Pad: an alternative approach to the computer interface , 1993, SIGGRAPH.

[30]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[31]  George W. Furnas,et al.  MuSE: a multiscale editor , 1998, UIST '98.

[32]  Myron W. Krueger,et al.  VIDEOPLACE—an artificial reality , 1985, CHI '85.

[33]  Toshiyuki Masui,et al.  Elastic graphical interfaces to precise data manipulation , 1995, CHI 95 Conference Companion.

[34]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[35]  Colin Ware,et al.  The DragMag image magnifier , 1995, CHI 95 Conference Companion.

[36]  Ravin Balakrishnan,et al.  "Beating" Fitts' law: virtual enhancements for pointing facilitation , 2004, Int. J. Hum. Comput. Stud..

[37]  Bongshin Lee,et al.  Timelines Revisited: A Design Space and Considerations for Expressive Storytelling , 2017, IEEE Transactions on Visualization and Computer Graphics.