DIRTMAP: the geological record of dust

Atmospheric dust is an important feedback in the climate system, potentially affecting the radiative balance and chemical composition of the atmosphere and providing nutrients to terrestrial and marine ecosystems. Yet the potential impact of dust on the climate system, both in the anthropogenically disturbed future and the naturally varying past, remains to be quantified. The geologic record of dust provides the opportunity to test earth system models designed to simulate dust. Records of dust can be obtained from ice cores, marine sediments, and terrestrial (loess) deposits. Although rarely unequivocal, these records document a variety of processes (source, transport and deposition) in the dust cycle, stored in each archive as changes in clay mineralogy, isotopes, grain size, and concentration of terrigenous materials. Although the extraction of information from each type of archive is slightly different, the basic controls on these dust indicators are the same. Changes in the dust flux and particle size might be controlled by a combination of (a) source area extent, (b) dust emission efficiency (wind speed) and atmospheric transport, (c) atmospheric residence time of dust, and/or (d) relative contributions of dry settling and rainout of dust. Similarly, changes in mineralogy reflect (a) source area mineralogy and weathering and (b) shifts in atmospheric transport. The combination of these geological data with process-based, forward-modelling schemes in global earth system models provides an excellent means of achieving a comprehensive picture of the global pattern of dust accumulation rates, their controlling mechanisms, and how those mechanisms may vary regionally. The Dust Indicators and Records of Terrestrial and MArine Palaeoenvironments (DIRTMAP) data base has been established to provide a global palaeoenvironmental data set that can be used to validate earth system model simulations of the dust cycle over the past 150,000 years.

[1]  J. Jouzel,et al.  A 150,000-year climatic record from Antarctic ice , 1985, Nature.

[2]  P. Biscaye,et al.  Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean , 1977 .

[3]  M. Legrand,et al.  Field investigation of major and minor ions along Summit (Central Greenland) ice cores by ion chromatography , 1993 .

[4]  W. C. Krumbein,et al.  Loess Distribution from a Source , 1970 .

[5]  D. N. Eden,et al.  Mineralogical and geochemical trends across the Loess Plateau, North China , 1994 .

[6]  N. Pisias,et al.  Late Pleistocene Continental Climate and Oceanic Variability Recorded in Northwest Pacific Sediments , 1991 .

[7]  R. F. Peel,et al.  Saharan dust: Mobilization, transport, deposition , 1980 .

[8]  G. Zielinski,et al.  Paleoenvironmental implications of the insoluble microparticle record in the GISP2 (Greenland) ice core during the rapidly changing climate of the Pleistocene–Holocene transition , 1997 .

[9]  Dongsheng Liu,et al.  Loess and the environment , 1985 .

[10]  M. Brovelli,et al.  Late Pleistocene , 2014 .

[11]  I. Tegen,et al.  Radiative Forcing of a Tropical Direct Circulation by Soil Dust Aerosols , 1999 .

[12]  Xing-min Meng,et al.  Variations in loess and palaeosol properties as indicators of palaeoclimatic gradients across the Loess Plateau of North China , 1995 .

[13]  S. Joussaume,et al.  Comments on the origin of dust in East Antarctica for present and ice age conditions , 1992 .

[14]  D. Rea,et al.  Asian aridity and the zonal westerlies: Late Pleistocene and Holocene record of eolian deposition in the northwest Pacific Ocean , 1988 .

[15]  I. Tegen,et al.  A general circulation model study on the interannual variability of soil dust aerosol , 1998 .

[16]  P. Mayewski,et al.  A comparison of major chemical species seasonal concentration and accumulation at the South Pole and summit, Greenland , 1992 .

[17]  S. Harrison,et al.  Global lake-level variations from 18,000 to 0 years ago: A palaeoclimate analysis , 1989 .

[18]  Francis E. Grousset,et al.  Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic , 1988 .

[19]  R. Alley,et al.  Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores , 1993, Nature.

[20]  Pierre E. Biscaye,et al.  Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans , 1965 .

[21]  R. Handy Loess distribution by variable winds , 1976 .

[22]  Ina Tegen,et al.  Climate Response to Soil Dust Aerosols , 1998 .

[23]  D. Muhs,et al.  Late Quaternary loess in northeastern Colorado: Part II—Pb isotopic evidence for the variability of loess sources , 1999 .

[24]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[25]  J. Jouzel,et al.  Palaeoclimatological and chronological implications of the Vostok core dust record , 1990, Nature.

[26]  E. Goldberg,et al.  The sediments of the northern Indian Ocean , 1970 .

[27]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[28]  P. Biscaye,et al.  Distributions and origins of clay minerals and quartz in surface sediments of the Arabian Sea , 1981 .

[29]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[30]  Z. Ding,et al.  Pedostratigraphy and paleomagnetism of a ̃7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution , 1999 .

[31]  M. Leinen The Late Quaternary Record of Atmospheric Transport to the Northwest Pacific from Asia , 1989 .

[32]  F. Giorgi Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model , 1988 .

[33]  Thompson,et al.  A 25,000-year tropical climate history from bolivian ice cores , 1998, Science.

[34]  A. Lacis,et al.  Climate forcing, climate sensitivity, and climate response : A radiative modeling perspective on atmospheric aerosols. , 1995 .

[35]  Sandy P. Harrison,et al.  Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments , 1999 .

[36]  M. Hansson The Renland ice core. A Northern Hemisphere record of aerosol composition over 120,000 years , 1994 .

[37]  V. Krongauz,et al.  Quasi-crystals from irradiated photochromic dyes in an applied electric field , 1978, Nature.

[38]  Piers M. Forster,et al.  The effect of human activity on radiative forcing of climate change: a review of recent developments , 1999 .

[39]  Michael Sarnthein,et al.  Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation , 1991, Quaternary Research.

[40]  D. Rea The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind , 1994 .

[41]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[42]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[43]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[44]  A. Lacis,et al.  The influence on climate forcing of mineral aerosols from disturbed soils , 1996, Nature.

[45]  B. Pluijm,et al.  Use of grain size and magnetic fabric analyses to distinguish among depositional environments , 1998 .

[46]  C. Genthon,et al.  Atmospheric dust under glacial and interglacial conditions , 1998 .

[47]  G. McTainsh,et al.  Last Glacial Maximum to Early Holocene Wind Strength in the Mid-latitudes of the Southern Hemisphere from Aeolian Dust in the Tasman Sea , 1999, Quaternary Research.

[48]  L. Thompson,et al.  Ice core evidence for climate change in the Tropics: implications for our future , 2000 .

[49]  André Berger,et al.  Simulation of the last glacial cycle by a coupled, sectorially averaged climate—ice sheet model: 1. The climate model , 1991 .

[50]  M. Sarnthein,et al.  Paleoclimatology and paleometeorology : modern and past patterns of global atmospheric transport , 1989 .

[51]  A. Mcintyre,et al.  The North Atlantic Ocean during the last deglaciation , 1981 .

[52]  W. Ruddiman Tropical Atlantic terrigenous fluxes since 25,000 yrs B.P. , 1997 .

[53]  I. N. McCave,et al.  Late Glacial and Holocene palaeocurrents around Rockall Bank, NE Atlantic Ocean , 1995 .

[54]  M. Legrand,et al.  Soluble and insoluble impurities along the 950 m deep Vostok ice core (Antarctica) — Climatic implications , 1983 .

[55]  J. Steffensen The size distribution of microparticles from selected segments of the Greenland Ice Core Project ice core representing different climatic periods , 1997 .

[56]  E. Mosley‐Thompson,et al.  Microparticle concentration variations linked with climatic change: evidence from polar ice cores. , 1981, Science.

[57]  J. King,et al.  15. PALEOENVIRONMENTAL VARIATION BASED ON THE MINERALOGY AND ROCK-MAGNETIC PROPERTIES OF SEDIMENT FROM SITES 885 AND 8861 , 1995 .

[58]  E. Mosley‐Thompson,et al.  Little Ice Age (Neoglacial) Paleoenvironmental Conditions At Siple Station, Antarctica , 1990, Annals of Glaciology.

[59]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[60]  A. Neftel,et al.  Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from summit, Central Greenland , 1993 .

[61]  J. Kutzbach,et al.  Evaluation of modelled regional water balance using lake status data: A comparison of 6 ka simulations with the NCAR CCM , 1998 .

[62]  M. Sarnthein,et al.  Wind-Borne Deposits in the Northwestern Indian Ocean: Record of Holocene Sediments Versus Modern Satellite Data , 1989 .

[63]  G. Kukla Loess stratigraphy in central China , 1987 .

[64]  K. Pye Aeolian dust and dust deposits , 1987 .

[65]  J. Jouzel,et al.  Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period , 1993, Nature.

[66]  I. McCave Local and global aspects of the bottom nepheloid layers in the world ocean , 1986 .

[67]  P. Biscaye,et al.  Clay mineralogy and sedimentation in the eastern Indian Ocean , 1973 .

[68]  A. Gaudichet,et al.  An investigation by analytical transmission electron microscopy of individual insoluble microparticles from Antarctic (Dome C) ice core samples , 1986 .

[69]  D. Rea,et al.  Provenance of dust in the Pacific Ocean , 1993 .

[70]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[71]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[72]  I. N. McCave,et al.  Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography , 1995 .

[73]  A. Zhisheng,et al.  Correlation between climate events in the North Atlantic and China during the last glaciation , 1995, Nature.

[74]  J. Prospero,et al.  Mineralogy of aeolian dust reaching the North Pacific Ocean: 1. Sampling and analysis , 1994 .

[75]  Robert A. Miller,et al.  Quaternary geologic map of the Lookout Mountain 4° x 6° quadrangle, United States , 1988 .

[76]  R. Vautard,et al.  Weather regimes in past climate atmospheric general circulation model simulations , 1999 .

[77]  J. Prospero,et al.  Variations in the size distribution of non‐sea‐salt sulfate aerosol in the marine boundary layer at Barbados: Impact of African dust , 1998 .

[78]  E. Mosley‐Thompson,et al.  Holocene—Late Pleistocene Climatic Ice Core Records from Qinghai-Tibetan Plateau , 1989, Science.

[79]  G. Carmichael,et al.  The Role of Mineral Aerosol in Tropospheric Chemistry in East Asia—A Model Study , 1999 .

[80]  J. King,et al.  The effect of source area and atmospheric transport on mineral aerosol collected over the North Pacific Ocean , 1998 .

[81]  A. Mcintyre,et al.  Seasonal reconstructions of the earth's surface at the last glacial maximum , 1981 .

[82]  M. Legrand,et al.  The chemical composition of cold events within the Eemian section of the Greenland Ice Core Project ice core from Summit, Greenland , 1997 .

[83]  R. Alley,et al.  Ice-core dating and chemistry by direct-current electrical conductivity , 1992, Journal of Glaciology.

[84]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[85]  M. Sarnthein,et al.  Atmospheric and Oceanic Circulation Patterns off Northwest Africa During the Past 25 Million Years , 1982 .

[86]  Richard B. Alley,et al.  The Younger Dryas cold interval as viewed from central Greenland , 2000 .

[87]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[88]  G. Fischer,et al.  Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: Implications for seasonal changes of aeolian dust input and downward transport , 1999 .

[89]  F. Grousset,et al.  Characterization of late glacial continental dust in the Greenland Ice Core Project ice core , 2000 .

[90]  E. Mosley‐Thompson,et al.  Late Glacial Stage and Holocene Tropical Ice Core Records from Huascar�n, Peru , 1995, Science.

[91]  D. Fisher Comparison of 105 Years of Oxygen Isotope and Insoluble Impurity Profiles from the Devon Island and Camp Century Ice Cores , 1979, Quaternary Research.

[92]  W. Manton,et al.  Sm–Nd, Rb–Sr and U–Th–Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica , 1982, Nature.

[93]  V. Maggi Mineralogy of atmospheric microparticles deposited along the Greenland Ice Core Project ice core , 1997 .

[94]  A. Cramp,et al.  About this title , 1998, Geological Society, London, Special Publications.

[95]  A. Bory,et al.  SAHARAN WIND REGIMES TRACED BY THE Sr–Nd ISOTOPIC COMPOSITION OF SUBTROPICAL ATLANTIC SEDIMENTS: LAST GLACIAL MAXIMUM vs TODAY , 1998 .

[96]  J. Shaw,et al.  Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese Loess Plateau , 1998 .

[97]  Richard Arimoto,et al.  Dust emission from Chinese desert sources linked to variations in atmospheric circulation , 1997 .

[98]  A. Gaudichet,et al.  Mineralogy of insoluble particles in the Vostok Antarctic ice core over the last climatic cycle (150 kyr) , 1988 .

[99]  C. Davidson,et al.  The Deposition Of Particles and Gases to Ice Sheets , 1996 .

[100]  T. Janecek Eolian Sedimentation in the Northwest Pacific Ocean: A Preliminary Examination of the Data from Deep Sea Drilling Project Sites 576 and 578 , 1985 .

[101]  Subir K. Banerjee,et al.  The paleoenvironmental-magnetic record of the Gold Hill Steps loess section in central Alaska , 1999 .

[102]  J. Bloemendal,et al.  Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau , 1998 .

[103]  Dale A. Gillette,et al.  The influence of wind velocity on the size distributions of aerosols generated by the wind erosion of soils , 1974 .

[104]  J. White,et al.  The abrupt termination of the Younger Dryas climate event , 1989, Nature.

[105]  David Peel,et al.  Preface [to special section on Greenland Summit Ice Cores] , 1997 .

[106]  F. Grousset,et al.  Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6 , 1997 .

[107]  J. T. Wang,et al.  Partly pedogenic origin of magnetic variations in Chinese loess , 1990, Nature.

[108]  Sandy P. Harrison,et al.  The role of dust in climate changes today, at the last glacial maximum and in the future , 2001 .

[109]  A. Royer,et al.  Ice age aerosol content from East Antarctic ice core samples and past wind strength , 1981, Nature.

[110]  M. Sarnthein,et al.  Late Miocene to Pleistocene Evolution of Climate in Africa and the Low-Latitude Atlantic: Overview of Leg 108 Results , 1989 .

[111]  Francis E. Grousset,et al.  Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core , 1997 .

[112]  G. Klouda,et al.  Interhemispheric comparison of changes in the composition of atmospheric precipitation during the late Cenozoic era , 1977 .

[113]  André Berger,et al.  Milankovitch and Climate , 1984, NATO ASI Series.

[114]  F. Grousset,et al.  Origins of peri-Saharan dust deposits traced by their Nd and Sr isotopic composition , 1992 .

[115]  J. D. Hays,et al.  Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy , 1987, Quaternary Research.

[116]  M. Legrand,et al.  High‐resolution ammonium ice core record covering a complete glacial‐interglacial cycle , 1996 .

[117]  L. D. Meeker,et al.  Major features and forcing of high‐latitude northern hemisphere atmospheric circulation using a 110,000‐year‐long glaciochemical series , 1997 .

[118]  P. Mayewski,et al.  Glaciochemistry of polar ice cores: A review , 1997 .

[119]  I. C. Prentice,et al.  BIOME 6000: reconstructing global mid‐Holocene vegetation patterns from palaeoecological records , 1998 .

[120]  Kendrick C. Taylor,et al.  Visual‐stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application , 1997 .

[121]  Jimin Sun,et al.  Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China , 1998 .

[122]  P. deMenocal,et al.  Global deep-sea burial rate of calcium carbonate during the last glacial maximum , 1998 .

[123]  M. Andreae Chapter 10 – Climatic effects of changing atmospheric aerosol levels , 1995 .

[124]  S. Clemens,et al.  Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep‐sea sediments , 1990 .

[125]  N. McFarlane,et al.  The mineral dust aerosol cycle during the Last Glacial Maximum , 1999 .

[126]  Sandy P. Harrison,et al.  How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets , 2000 .

[127]  H. Oeschger,et al.  Greenland Ice Core: Geophysics, Geochemistry, and the Environment , 1985 .

[128]  P. Biscaye,et al.  Distribution and origin of quartz in the sediments of the Indian Ocean , 1977 .

[129]  J. Jouzel,et al.  A 135,000‐year Vostok‐Specmap Common temporal framework , 1993 .

[130]  M. Sarnthein Sand deserts during glacial maximum and climatic optimum , 1978, Nature.

[131]  C. Wake,et al.  A Holocene Record of Atmospheric Dust Deposition on the Penny Ice Cap, Baffin Island, Canada , 2000, Quaternary Research.

[132]  F. Sirocko,et al.  Clay-mineral accumulation rates in the Arabian Sea during the late Quaternary , 1991 .

[133]  Sandy P. Harrison,et al.  Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP) , 1999 .

[134]  R. Kemp,et al.  Pedosedimentary Reconstruction of a Thick Loess-Paleosol Sequence near Lanzhou in North-Central China , 1995, Quaternary Research.

[135]  A. Royer,et al.  A 30000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models , 1983 .

[136]  G. Ramstein,et al.  Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata , 1999 .

[137]  R. Alley,et al.  Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates , 1995, Journal of Glaciology.

[138]  P. Bloomfield,et al.  Changes in Atmospheric Circulation and Ocean Ice Cover over the North Atlantic During the Last 41,000 Years , 1994, Science.

[139]  L. R. Johnson Particle-size fractionation of eolian dusts during transport and sampling , 1976 .

[140]  J. Kutzbach,et al.  Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments , 1989 .

[141]  R. Jaenicke,et al.  Saharan dust transport over the North Atlantic Ocean , 1981 .

[142]  Michael E. Evans,et al.  A magnetic investigation of a Late Quaternary loess/palaeosol record in Siberia , 2002 .

[143]  M. Sarnthein,et al.  Geology of the northwest African continental margin , 1982 .

[144]  J. Jouzel,et al.  Ice core age dating and paleothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica) , 1998 .

[145]  R. Bales,et al.  Chemical exchange between the atmosphere and polar snow , 1996 .

[146]  F. Oldfield,et al.  High-resolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr , 1997 .

[147]  J. Damuth,et al.  Sedimentation processes in the Northwest Pacific Basin revealed by echo-character mapping studies , 1983 .

[148]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[149]  J. Steffensen,et al.  Analysis of the Seasonal Variation in Dust, Cl−, NO3 −, and SO4 2− in Two Central Greenland Firn Cores , 1988, Annals of Glaciology.

[150]  J. Steffensen,et al.  On the Spatial Variability of Impurity Content and Stable Isotopic Composition in Recent Summit Snow , 1996 .

[151]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[152]  P. Hesse The record of continental dust from Australia in Tasman Sea Sediments , 1994 .

[153]  J. Kutzbach,et al.  Intercomparison of Simulated Global Vegetation Distributions in Response to 6 kyr BP Orbital Forcing , 1998 .

[154]  J. D. Hays,et al.  The orbital theory of Pleistocene climate : Support from a revised chronology of the marine δ^ O record. , 1984 .

[155]  I. N. McCave,et al.  Late Glacial to Recent accumulation fluxes of sediments at the shelf edge and slope of NW Europe, 48–50°N , 1998, Geological Society, London, Special Publications.

[156]  E. Wolff,et al.  Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years , 1999 .

[157]  David K. Rea,et al.  Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific , 1995 .

[158]  T. Stafford,et al.  Late Quaternary loess in northeastern Colorado: Part I—Age and paleoclimatic significance , 1999 .

[159]  R. Fairbanks,et al.  Reconstructing tropical Atlantic hydrography using planktontic foraminifera and an ocean model , 1990 .

[160]  J. Jouzel,et al.  Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: Isotopic constraints on origins , 1992 .

[161]  S. Clemens Dust response to seasonal atmospheric forcing: Proxy evaluation and calibration , 1998 .

[162]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[163]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[164]  E. Mosley‐Thompson,et al.  Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core , 1997 .

[165]  Z. An,et al.  Glacial and interglacial patterns for Asian dust transport , 1998 .

[166]  O. Boucher,et al.  Uncertainties in assessing radiative forcing by mineral dust , 1998 .

[167]  B. Maher,et al.  Paleoclimatic Significance of the Mineral Magnetic Record of the Chinese Loess and Paleosols , 1992, Quaternary Research.

[168]  T. Stocker,et al.  Timing of the Antarctic cold reversal and the atmospheric CO2 increase with respect to the Younger Dryas Event , 1997 .

[169]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[170]  Z. Ding,et al.  Towards an orbital time scale for chinese loess deposits , 1994 .

[171]  Murray Gray,et al.  Global Climates since the Last Glacial Maximum , 1994 .