Author Correction: Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators

[1]  A. Boes,et al.  Low loss (Al)GaAs on an insulator waveguide platform. , 2019, Optics letters.

[2]  K. Srinivasan,et al.  Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures. , 2019, Physical review applied.

[3]  John E. Bowers,et al.  Strong frequency conversion in heterogeneously integrated GaAs resonators , 2019, APL Photonics.

[4]  T. C. Briles,et al.  Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics , 2019, Nature Photonics.

[5]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[6]  Erwan Lucas,et al.  Nanophotonic soliton-based microwave synthesizers , 2019, 1901.10372.

[7]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[8]  M. Gorodetsky,et al.  Electrically pumped photonic integrated soliton microcomb , 2018, Nature Communications.

[9]  M. Lipson,et al.  Battery-operated integrated frequency comb generator , 2018, Nature.

[10]  Jonathan M. Silver,et al.  Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser , 2018, Optica.

[11]  John E. Bowers,et al.  Photonic Integrated Circuits Using Heterogeneous Integration on Silicon , 2018, Proceedings of the IEEE.

[12]  T. Kippenberg,et al.  Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins , 2018, Optica.

[13]  John E. Bowers,et al.  Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics , 2018, Applied Sciences.

[14]  John E. Bowers,et al.  Heterogeneously Integrated GaAs Waveguides on Insulator for Efficient Frequency Conversion , 2018, Laser & Photonics Reviews.

[15]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[16]  M. Karpov,et al.  Ultralow-Power Chip-Based Soliton Microcombs for Photonic Integration , 2018, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[17]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[18]  Kerry J. Vahala,et al.  Gigahertz-repetition-rate soliton microcombs , 2018 .

[19]  L. Czornomaz,et al.  Gallium Phosphide-on-Silicon Dioxide Photonic Devices , 2018, Journal of Lightwave Technology.

[20]  Marko Loncar,et al.  Monolithic ultra-high-Q lithium niobate microring resonator , 2017, 1712.04479.

[21]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[22]  Bruno Gérard,et al.  Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 10 6 , 2017 .

[23]  Heming Wang,et al.  Bridging ultrahigh-Q devices and photonic circuits , 2017, Nature Photonics.

[24]  J. Bowers,et al.  Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. , 2017, Optics letters.

[25]  E. Semenova,et al.  Efficient frequency comb generation in AlGaAs-on-insulator , 2016 .

[26]  John E. Bowers,et al.  Thin film wavelength converters for photonic integrated circuits , 2016 .

[27]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.

[28]  Tohru Mogami,et al.  Low-loss silicon wire waveguides for optical integrated circuits , 2016 .

[29]  Kerry J. Vahala,et al.  Soliton frequency comb at microwave rates in a high-Q silica microresonator , 2015 .

[30]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[31]  Jian Wang,et al.  Mode-locked dark pulse Kerr combs in normal-dispersion microresonators , 2015, Nature Photonics.

[32]  Kartik Srinivasan,et al.  Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits , 2015, Nature Photonics.

[33]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[34]  I Favero,et al.  Second-harmonic generation in AlGaAs microdisks in the telecom range. , 2014, Optics letters.

[35]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[36]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[37]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[38]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[39]  A. Leinse,et al.  Ultra-low-loss high-aspect-ratio Si3N4 waveguides. , 2011, Optics express.

[40]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[41]  Shanhui Fan,et al.  Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. , 2006, Optics letters.

[42]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[43]  Ofer Levi,et al.  Improved dispersion relations for GaAs and applications to nonlinear optics , 2003 .

[44]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[45]  J. S. Aitchison,et al.  The nonlinear optical properties of AlGaAs at the half band gap , 1997 .

[46]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[47]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[48]  K. Vahala Optical microcavities , 2003, Nature.