Synthetic Aperture Radar 3D Feature Extraction for Arbitrary Flight Paths

We propose an algorithm for extracting multiple geometric scattering features from synthetic aperture radar (SAR) phase history collected over arbitrary, 3D monostatic or bistatic apertures. The algorithm input is complex-valued phase history; the output is a list of features and corresponding parameter estimates. We fit to the data parametric models for six canonical features. The feature extraction problem includes model order selection, shape classification, and parameter estimation. Examples include densely-sampled and sparse apertures for monostatic and bistatic scenarios.

[1]  E.J. Candes Compressive Sampling , 2022 .

[2]  W. Clem Karl,et al.  Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization , 2001, IEEE Trans. Image Process..

[3]  J. Huynen Phenomenological theory of radar targets , 1970 .

[4]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  M. J. Gerry Two-dimensional inverse scattering based on the GTD model / , 1997 .

[7]  Randolph L. Moses,et al.  3D feature estimation for sparse, nonlinear bistatic SAR apertures , 2010, 2010 IEEE Radar Conference.

[8]  R.L. Moses,et al.  Parametric scattering models for bistatic synthetic aperture radar , 2008, 2008 IEEE Radar Conference.

[9]  T. Arens,et al.  Why linear sampling works , 2004 .

[10]  Luke Lin,et al.  Data Dome: full k-space sampling data for high-frequency radar research , 2004, SPIE Defense + Commercial Sensing.

[11]  Lawrence Carin,et al.  Matching pursuits with a wave-based dictionary , 1997, IEEE Trans. Signal Process..

[12]  Randolph L. Moses,et al.  Image domain feature extraction from synthetic aperture imagery , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[13]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[14]  Randolph L. Moses,et al.  Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR , 2006, SPIE Defense + Commercial Sensing.

[15]  Müjdat Çetin,et al.  Hyper-parameter selection in non-quadratic regularization-based radar image formation , 2008, SPIE Defense + Commercial Sensing.

[16]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[17]  Lee C. Potter,et al.  Attributed scattering centers for SAR ATR , 1997, IEEE Trans. Image Process..

[18]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[19]  Julie Ann Jackson,et al.  Canonical Scattering Feature Models for 3D and Bistatic SAR , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Emre Ertin,et al.  Sparse multipass 3D SAR imaging: applications to the GOTCHA data set , 2009, Defense + Commercial Sensing.

[21]  R.L. Moses,et al.  Wie-Angle Sarse 3D Synthetic Aerture Radar Imaging for Nonlinear Flight Paths , 2008, 2008 IEEE National Aerospace and Electronics Conference.

[22]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[23]  Andreas Kirsch,et al.  THE FACTORIZATION METHOD FOR MAXWELL'S EQUATIONS , 2004 .

[24]  Kush R. Varshney,et al.  Joint anisotropy characterization and image formation in wide-angle synthetic aperture radar , 2006 .

[25]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[26]  John A. Richards,et al.  Expectation-maximization approach to target model generation from multiple synthetic aperture radar images , 2002 .

[27]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[28]  Jian Li,et al.  Efficient mixed-spectrum estimation with applications to target feature extraction , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[29]  Randolph L. Moses,et al.  Identifiability of 3D attributed scattering features from sparse nonlinear apertures , 2007, SPIE Defense + Commercial Sensing.

[30]  Matthew Ferrara,et al.  Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques , 2009, Defense + Commercial Sensing.

[31]  S. D. Halversen,et al.  Effects of Polarization and Resolution on the Performance of a SAR Automatic Target Recognition System , 1995 .

[32]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[33]  Yeliz Akyildiz,et al.  Feature extraction from synthetic aperture radar imagery , 2000 .

[34]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[35]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[36]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[37]  Peter Monk,et al.  The Linear Sampling Method in Inverse Electromagnetic Scattering , 2010 .

[38]  Thomas J. Kragh,et al.  Monotonic Iterative Algorithms for SAR Image Restoration , 2006, 2006 International Conference on Image Processing.

[39]  Julie Ann Jackson,et al.  Three-Dimensional Feature Models for Synthetic Aperture Radar and Experiments in Feature Extraction , 2009 .

[40]  Brian D. Rigling,et al.  Signal processing strategies for bistatic synthetic aperture radar , 2003 .

[41]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[42]  Hao Ling,et al.  Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation , 1997 .

[43]  Emre Ertin,et al.  Polarimetric processing and sequential detection for automatic target recognition systems , 1999 .