Fast numerical schemes related to curvature minimization: a brief and elementary review

We will treat variational models that use Euler’s elastica and related higher order derivatives as regularizers. These models normally lead to higher order partial differential equations with complicated nonlinearities. It is difficult to solve these equations numerically. Recently, some fast numerical techniques have been proposed that can solve these equations with very good numerical speed. We will try to explain the essential ideas of these numerical techniques and point to some central implementation details for these algorithms.

[1]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[2]  D. Ye,et al.  Well-posedness for a fourth order nonlinear equation related to image processing , 2014 .

[3]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[4]  Thomas Pock,et al.  Convex Relaxation of a Class of Vertex Penalizing Functionals , 2013, Journal of Mathematical Imaging and Vision.

[5]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[6]  Anthony J. Yezzi,et al.  Image Sharpening via Sobolev Gradient Flows , 2010, SIAM J. Imaging Sci..

[7]  Arjan Kuijper,et al.  Scale Space and Variational Methods in Computer Vision , 2013, Lecture Notes in Computer Science.

[8]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[9]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[10]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[11]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[12]  Ke Chen,et al.  On High-Order Denoising Models and Fast Algorithms for Vector-Valued Images , 2010, IEEE Transactions on Image Processing.

[13]  R. Chan,et al.  An Adaptive Strategy for the Restoration of Textured Images using Fractional Order Regularization , 2013 .

[14]  Yu Wang,et al.  Fast Regularization of Matrix-Valued Images , 2012, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[15]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[16]  Xue-Cheng Tai,et al.  A Fast Algorithm for Euler's Elastica Model Using Augmented Lagrangian Method , 2011, SIAM J. Imaging Sci..

[17]  L. Ambrosio,et al.  A direct variational approach to a problem arising in image reconstruction , 2003 .

[18]  Daniel Cremers,et al.  Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[20]  Alexander M. Bronstein,et al.  Group-Valued Regularization for Analysis of Articulated Motion , 2012, ECCV Workshops.

[21]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Properties of Higher Order Nonlinear Diffusion Filtering Properties of Higher Order Nonlinear Diffusion Filtering , 2022 .

[22]  Weili Zeng,et al.  Non-linear fourth-order telegraph-diffusion equation for noise removal , 2013, IET Image Process..

[23]  Xue-Cheng Tai,et al.  A study on continuous max-flow and min-cut approaches , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Xue-Cheng Tai,et al.  A Continuous Max-Flow Approach to Potts Model , 2010, ECCV.

[25]  Tony F. Chan,et al.  A Variational Model for Capturing Illusory Contours Using Curvature , 2006, Journal of Mathematical Imaging and Vision.

[26]  Xue-Cheng Tai,et al.  A Convex and Exact Approach to Discrete Constrained TV-L1 Image Approximation , 2011 .

[27]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[28]  Xue-Cheng Tai,et al.  A spatially continuous max-flow and min-cut framework for binary labeling problems , 2014, Numerische Mathematik.

[29]  Patrick Guidotti,et al.  Two Enhanced Fourth Order Diffusion Models for Image Denoising , 2011, Journal of Mathematical Imaging and Vision.

[30]  F. Yang,et al.  EFFICIENT HOMOTOPY SOLUTION AND A CONVEX COMBINATION OF ROF AND LLT MODELS FOR IMAGE RESTORATION , 2012 .

[31]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[32]  Changfeng Gui,et al.  ENTROPY ESTIMATES AND LARGE-TIME BEHAVIOR OF SOLUTIONS TO A FOURTH-ORDER NONLINEAR DEGENERATE EQUATION , 2013 .

[33]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[34]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[35]  Tony F. Chan,et al.  Segmentation with Depth: A Level Set Approach , 2006, SIAM J. Sci. Comput..

[36]  Yuping Duan,et al.  A fixed-point augmented Lagrangian method for total variation minimization problems , 2013, J. Vis. Commun. Image Represent..

[37]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[38]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[39]  Xue-Cheng Tai,et al.  Image Segmentation Using Euler’s Elastica as the Regularization , 2013, J. Sci. Comput..

[40]  Jidesh Pacheeripadikkal,et al.  Fourth-order variational model with local-constraints for denoising images with textures , 2011, Int. J. Comput. Vis. Robotics.

[41]  Eduardo Cuesta,et al.  Image structure preserving denoising using generalized fractional time integrals , 2012, Signal Process..

[42]  Soren Forchhammer,et al.  Wavelet-based image enhancement using fourth order PDE , 2011, 2011 IEEE 7th International Symposium on Intelligent Signal Processing.

[43]  Bastian Goldlücke,et al.  Total Variation , 2014, Computer Vision, A Reference Guide.

[44]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[45]  Carola-Bibiane Schönlieb,et al.  A Combined First and Second Order Variational Approach for Image Reconstruction , 2012, Journal of Mathematical Imaging and Vision.

[46]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models , 2010, SIAM J. Imaging Sci..

[47]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[48]  Xue-Cheng Tai,et al.  Augmented Lagrangian method for a mean curvature based image denoising model , 2013 .

[49]  Guo-Wei Wei,et al.  High-order fractional partial differential equation transform for molecular surface construction. , 2013, Molecular Based Mathematical Biology.

[50]  Kristian Bredies,et al.  Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[51]  Tony F. Chan,et al.  Image Denoising Using Mean Curvature of Image Surface , 2012, SIAM J. Imaging Sci..