Influence of the membrane dipole potential on peptide binding to lipid bilayers.

The implicit membrane model IMM1 is extended to include the membrane dipole potential and applied to molecular dynamics simulations of the helical peptides alamethicin, WALP23, influenza hemagglutinin fusion peptide, HIV fusion peptide, magainin, and the pre-sequence of cytochrome c oxidase subunit IV (p25). The results show that the orientation of the peptides in the membrane can be influenced by the dipole potential. The binding affinity of all peptides except for the hemagglutinin fusion peptide decreases upon increase of the dipole potential. The changes in both orientation and binding affinity are explained by the interaction of the dipole potential with the helix backbone dipole and ionic side-chains. In general, peptides that tend to insert the N-terminus in the membrane and/or have positively charged side chains will lose binding affinity upon increase of the dipole potential.

[1]  E. Disalvo,et al.  Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  T. Lazaridis Effective energy function for proteins in lipid membranes , 2003, Proteins.

[3]  O. Andersen,et al.  Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. , 1975, Biophysical journal.

[4]  R. Larson,et al.  Structure, topology, and tilt of cell-signaling peptides containing nuclear localization sequences in membrane bilayers determined by solid-state NMR and molecular dynamics simulation studies. , 2007, Biochemistry.

[5]  A. Lyubartsev,et al.  Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. , 2008, Biophysical journal.

[6]  Velin Z. Spassov,et al.  Introducing an Implicit Membrane in Generalized Born/Solvent Accessibility Continuum Solvent Models , 2002 .

[7]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[8]  W. Shinoda,et al.  Molecular Dynamics Study on Electrostatic Properties of a Lipid Bilayer: Polarization, Electrostatic Potential, and the Effects on Structure and Dynamics of Water near the Interface , 1998 .

[9]  Sandeep Patel,et al.  Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. , 2009, Biophysical journal.

[10]  B. Desbat,et al.  Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy. , 2005, Biochimica et biophysica acta.

[11]  J. Cladera,et al.  Effect of cholesterol on the interaction of the HIV GP41 fusion peptide with model membranes. Importance of the membrane dipole potential. , 2006, Biochemistry.

[12]  R. Brasseur,et al.  Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. , 1989, Biochemical and biophysical research communications.

[13]  D. Needham,et al.  Interbilayer interactions between sphingomyelin and sphingomyelin/cholesterol bilayers. , 1992, Biochemistry.

[14]  T. McIntosh,et al.  Bilayer interfacial properties modulate the binding of amphipathic peptides. , 2003, Chemistry and physics of lipids.

[15]  T. McIntosh,et al.  Magnitude of the solvation pressure depends on dipole potential. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E Jakobsson,et al.  Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. , 1999, Biophysical journal.

[17]  L. Mereuta,et al.  Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[18]  E. Jakobsson,et al.  Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. , 1995, Biophysical journal.

[19]  S. Hladky,et al.  Membrane conductance and surface potential , 1973 .

[20]  M. Matsumoto,et al.  Study on liquid–vapor interface of water. I. Simulational results of thermodynamic properties and orientational structure , 1988 .

[21]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[22]  V A Parsegian,et al.  Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. , 1992, Biophysical journal.

[23]  I. Vorobyov,et al.  Electrostatics of deformable lipid membranes. , 2010, Biophysical journal.

[24]  Ilpo Vattulainen,et al.  Cationic DMPC/DMTAP lipid bilayers: molecular dynamics study. , 2003, Biophysical journal.

[25]  J. Cladera,et al.  Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide. , 1998, Biophysical journal.

[26]  M. Hohwy,et al.  Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance. , 2001, Biophysical journal.

[27]  Ioan Andricioaei,et al.  Surface orientation of magainin 2: molecular dynamics simulation and sum frequency generation vibrational spectroscopic studies. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[28]  D. Haydon,et al.  Surface charge, surface dipoles and membrane conductance. , 1973, Biochimica et biophysica acta.

[29]  Jung-Hsin Lin,et al.  Bridging implicit and explicit solvent approaches for membrane electrostatics. , 2002, Biophysical journal.

[30]  Igor Vorobyov,et al.  The electrostatics of solvent and membrane interfaces and the role of electronic polarizability , 2010 .

[31]  E. Liberman,et al.  Selective transport of ions through bimolecular phospholipid membranes. , 1968, Biochimica et biophysica acta.

[32]  B. Honig,et al.  Electrostatic interactions in membranes and proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[33]  H. Berg Membrane dipole potentials. , 1968, Biophysical journal.

[34]  R. Latorre,et al.  Phloretin and phloretin analogs: Mode of action in planar lipid bilayers and monolayers , 1983, The Journal of Membrane Biology.

[35]  M. Feig,et al.  A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. , 2005, The Journal of chemical physics.

[36]  M. Karplus,et al.  Effective energy function for proteins in solution , 1999, Proteins.

[37]  A. Finkelstein,et al.  Effect of phloretin on the permeability of thin lipid membranes , 1976, The Journal of general physiology.

[38]  H. Brockman,et al.  Dipole potential of lipid membranes. , 1994, Chemistry and physics of lipids.

[39]  D. Tosteson,et al.  Phloretin-induced changes in ion transport across lipid bilayer membranes , 1977, The Journal of general physiology.

[40]  S. Opella,et al.  Tilt angle of a trans-membrane helix is determined by hydrophobic mismatch. , 2005, Journal of molecular biology.

[41]  Herman J. C. Berendsen,et al.  Molecular dynamics simulation of a membrane/water interface: the ordering of water and its relation to the hydration force , 1993 .

[42]  Fred J Sigworth,et al.  Using cryo-EM to measure the dipole potential of a lipid membrane , 2006, Proceedings of the National Academy of Sciences.

[43]  D. Cafiso,et al.  Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. , 1993, Biophysical journal.

[44]  T. Lazaridis,et al.  Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. , 2007, Biochimica et biophysica acta.

[45]  U. Essmann,et al.  Dynamical properties of phospholipid bilayers from computer simulation. , 1999, Biophysical journal.

[46]  S. Kamath,et al.  Membrane structure of the human immunodeficiency virus gp41 fusion domain by molecular dynamics simulation. , 2002, Biophysical journal.

[47]  R. Brasseur,et al.  Peptides in membranes: tipping the balance of membrane stability. , 1997, Trends in biochemical sciences.

[48]  C. Brooks,et al.  An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. , 2003, Biophysical journal.

[49]  R. Clarke,et al.  Effect of headgroup on the dipole potential of phospholipid vesicles , 2009, European Biophysics Journal.

[50]  A. Pohorille,et al.  Comment on "Study on the liquid-vapor interface of water. I. Simulation results of thermodynamic properties and orientational structure". , 1989, The Journal of chemical physics.

[51]  J. Killian,et al.  On the orientation of a designed transmembrane peptide: toward the right tilt angle? , 2007, Journal of the American Chemical Society.

[52]  S. McLaughlin,et al.  The electrostatic properties of membranes. , 1989, Annual review of biophysics and biophysical chemistry.

[53]  R. Clarke The dipole potential of phospholipid membranes and methods for its detection. , 2001, Advances in colloid and interface science.

[54]  L M Loew,et al.  Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. , 1994, Biophysical journal.

[55]  Klaus Schulten,et al.  Molecular dynamics study of a membrane - Water interface , 1995 .

[56]  R. Benz,et al.  Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures , 1978, The Journal of Membrane Biology.

[57]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.

[58]  Y. Shai,et al.  Peptide-bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. , 1999, Biophysical chemistry.

[59]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[60]  M. Klein,et al.  Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[61]  H De Loof,et al.  Conformational analysis of lipid-associating proteins in a lipid environment. , 1988, Biochimica et biophysica acta.

[62]  L. Tamm,et al.  Secondary structure of a mitochondrial signal peptide in lipid bilayer membranes , 1990, FEBS letters.

[63]  Themis Lazaridis,et al.  Implicit solvent simulations of peptide interactions with anionic lipid membranes , 2004, Proteins.

[64]  W. Hubbell,et al.  The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. , 1986, Biophysical journal.

[65]  Alexander P. Lyubartsev,et al.  Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. , 2010, Biophysical chemistry.

[66]  Alexander D. MacKerell,et al.  Many-body polarization effects and the membrane dipole potential. , 2009, Journal of the American Chemical Society.

[67]  M. Patra,et al.  Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. , 2003, Biophysical journal.

[68]  M. Malmsten,et al.  Melittin-lipid bilayer interactions and the role of cholesterol. , 2008, Biophysical journal.

[69]  J. Cladera,et al.  Effects of the Membrane Dipole Potential on the Interaction of Saquinavir with Phospholipid Membranes and Plasma Membrane Receptors of Caco-2 Cells* , 2001, The Journal of Biological Chemistry.